
Debugging Distributed Systems with Why-Across-Time Provenance
Michael Whittaker, Cristina Teodoropol, Peter Alvaro, Joseph M. Hellerstein

Debugging Distributed Systems with Why-Across-Time Provenance
Michael Whittaker, Cristina Teodoropol, Peter Alvaro, Joseph M. Hellerstein

Causality

Causality applies to arbitrary state machines, but it is an overapprox-
imation of the true causes of an event.

Server a

Server b

Server c

a1 a2 a3

b1 b2 b3

c1 c2

Why-Provenance

Given a relational algebra query Q, a database instance I , and a
tuple t ∈ Q(I), a witness of t is a subinstance J ⊆ I such that t ∈
Q(J). The why-provenance of t, Why(Q, I, t), is the set of minimal
witnesses of t.

Q
def
= πname(σfriend1=ecodd(Users ./username=friend2 Friends))

Users

username name

ecodd Edgar Codd
jumpman Michael Jordan
mlpro Michael Jordan

Friends

friend1 friend2

ecodd jumpman
ecodd mlpro

Why-provenance returns the precise causes of an event, but it is lim-
ited to static relational databases.

State Machines
A state machine M = (S, s0,Σ,Λ, δ, ε) consists of a set S of states,
a start state s0 ∈ S, an input alphabet Σ, an output alphabet Λ, a
transition function δ : S×Σ→ S, and an output function ε : S×Σ→ Λ.

a1 a2 a3 a4

trace T

a1 a3

subtrace T ′

subtraces of T ′

a1 a3

a3

a1

supertraces of T ′ in T
a1 a3

a1 a2 a3

a1 a3 a4

a1 a2 a3 a4

Wat-Provenance

Example 1. Consider a key-value server state machine M with an in-
put alphabet that consists of sets and gets to integer-valued variables
that are initially 0.

T = set(x, 1); set(y, 2)
i = get(x)
o = 1

Example 2.Consider a state machine M that stores a set of boolean-
valued variables that are initially false. Users can set variables to
true or false and can request that M evaluate a formula over these
variables.

T = set(a); set(b); set(c); set(d)
i = eval((a ∧ d) ∨ (b ∧ c))
o = true

Example 3. Consider again the state machine M from the previous
example.

T = set(a); set(b); set(c)
i = eval((a ∧ ¬b) ∨ c)
o = true

Given a state machine M , an input trace T , an input i, and the cor-
responding output o = ε∗(s0, T i), we say that a subtrace T ′ of T is a
witness of o if ε∗(s0, T

′i) = o. We say that a witness T ′ of o is closed
under supertrace in T if every supertrace of T ′ in T is also a wit-
ness of o. Let Wit(M,T, i) be the set of witnesses of o that are closed
under supertrace in T . The wat-provenance of input i with respect
to M and T , abbreviated Wat(M,T, i), is the set of minimal elements
of Wit(M,T, i).

Example 4. Consider again the key-value server state machine from
Example 1.

T = a1a2a3 = set(x, 1); set(x, 2); set(x, 1)
i = get(x)
o = 1

Example 5. Consider a relational database state machine M . The
input alphabet of M includes commands to insert a tuple into M and
to execute a relational algebra query against M . Initially, all relations
are empty.

T = a1a2a3 = insert(R, t); insert(R, u); insert(S, u)
i = query(R− S)
o = {t}

Wat-Provenance Specifications

•Automatically computing the wat-provenance of a black box is infea-
sible because it requires a complex code analysis of the black box’s
implementation.

•Fortunately, many black box components have simple interfaces,
even if they have complex implementations.

•A wat-provenance specification is a function that—given a trace
T and input i—directly returns the wat-provenance of i. Wat-
provenance specifications are written against a system’s interface
(simple) instead of its implementation (complex).

•Examples of black boxes with simple wat-provenance specifications
include key-value stores, object stores, distributed file systems, co-
ordination services, load balancers, and stateless services.

Watermelon

•Watermelon is a prototype distributed debugging framework that
leverages wat-provenance and wat-provenance specifications.

•Users write wat-provenance specifications in Python or SQL.

•Watermelon uses shims to trace causal history.

Client

S
hi

m

Server
1 2

34

Evaluation

System Language LOC Supported API

Redis SQL 30 get, set, del, append, incr, decr, incrby, decrby, strlen
POSIX Python 88 reading and writing byte ranges
Amazon S3 Python 200 creating, copying, catting, removing, and listing objects

and buckets
Zookeeper SQL 70 creating, reading, writing, and listing znodes

Debugging Technique Ease Of Adoption Runtime
Overheads

Supports
High-Level
Debugging

Supports
Low-Level
Debugging

SPADE (Audit Logs) easy low no some
SPADE (LLVM) easy high no yes
printf Debugging easy–impossible low some yes
Watermelon easy–hard medium yes no


