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ABSTRACT
Systematically reasoning about the fine-grained causes of

events in a real-world distributed system is challenging.

Causality, from the distributed systems literature, can be

used to compute the causal history of an arbitrary event in a

distributed system, but the event’s causal history is an over-

approximation of the true causes. Data provenance, from the

database literature, precisely describes why a particular tuple

appears in the output of a relational query, but data prove-

nance is limited to the domain of static relational databases.

In this paper, we present wat-provenance: a novel form

of provenance that provides the benefits of causality and

data provenance. Given an arbitrary state machine, wat-

provenance describes why the state machine produces a

particular output when given a particular input. This enables

system developers to reason about the causes of events in

real-world distributed systems. We observe that automati-

cally extracting the wat-provenance of a state machine is

often infeasible. Fortunately, many distributed systems com-

ponents have simple interfaces from which a developer can

directly specify wat-provenance using a technique we call

wat-provenance specifications. Leveraging the theoretical
foundations of wat-provenance, we implement a prototype

distributed debugging framework called Watermelon.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00

https://doi.org/10.1145/3267809.3267839

CCS CONCEPTS
• Information systems → Data provenance; • Theory
of computation → Data provenance; Formal languages

and automata theory; • Software and its engineering→

Software testing and debugging;

KEYWORDS
data provenance, state machines, distributed systems

ACM Reference Format:
Michael Whittaker, Cristina Teodoropol, Peter Alvaro, and Joseph

M. Hellerstein. 2018. Debugging Distributed Systems with Why-

Across-Time Provenance. In Proceedings of ACM Symposium on
Cloud Computing, Carlsbad, CA, USA, October 11–13, 2018 (SoCC
’18), 14 pages.
https://doi.org/10.1145/3267809.3267839

1 INTRODUCTION
Debugging distributed systems is hard. Traditional debug-

ging techniques are poorly suited to distributed systems in

which bugs arise across multiple nodes connected by an unre-

liable network that can drop, duplicate, and reorder messages.

Distributed debugging tools exist but are in their infancy.

They help tame some of the complexities of distributed debug-

ging, but have limited applicability to real-world distributed

systems that are made up of a large number of complex

components. Consequently, developers perform ad-hoc root

cause analysis to find the source of a bug, stitching together

the logs of multiple concurrently executing nodes.

Worse, existing formalisms are also inadequate to reason

about systematically debugging real-world distributed sys-

tems. For example, consider causality [20]. Causality is a

general-purpose formalism that specifies the causal history

of a particular event in an arbitrary distributed system. How-

ever, causality is too general-purpose, as it fails to incorpo-

rate any semantics of the underlying distributed system [2].

As a consequence, the causal history of an event is an over-

approximation of the cause of the event. It includes all the

https://doi.org/10.1145/3267809.3267839
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events that might have caused a particular event instead of

the events that actually do cause it.
Alternatively, consider data provenance in the form of

why-provenance [5, 7]. Given a relational database, a query

issued against the database, and a tuple in the output of the

query, why-provenance explains why the output tuple was

produced. That is, why-provenance produces the input tuples

that, if passed through the relational operators of the query,

would produce the output tuple in question. In contrast to

causality, data provenance heavily incorporates the seman-

tics of relational databases and queries to describe precisely
the cause of a particular output. However, why-provenance

makes the critical assumption that the underlying relational

database is static. It cannot handle the time-varying nature

of stateful distributed systems. Moreover, data provenance

is limited to the domain of relational data and cannot easily

be applied to other system components (e.g., load balancers,

file systems, coordination services, etc.).

In short, causality lacks a notion of data dependence, and

data provenance lacks a notion of time. In this paper, we

present wat-provenance (why-across-time provenance): a

novel form of data provenance that unifies ideas from the

two. Wat-provenance generalizes why-provenance from the

domain of relational queries issued against a static database

to the domain of arbitrary time-varying state machines in a

distributed system. More specifically, given a deterministic

state machine, the state machine’s sequence of inputs, and a

particular input to the state machine, wat-provenance for-

malizes why the state machine produces the output that it

does. This description is the set of subsequences of the input

trace that are necessary and sufficient to generate the out-

put in question. Borrowing from causality, wat-provenance

can be applied to time-varying state machines. Borrowing

from why-provenance, wat-provenance incorporates state

machine semantics to avoid overapproximating provenance.

After we define wat-provenance, we turn to the matter of

computing it. We observe that automatically extracting the

wat-provenance of a state machine is often infeasible. Com-

puting the wat-provenance of a state machine is tantamount

to inferring the state machine’s data dependencies using a

complex code analysis of the state machine’s source code.

This source code can be both large and complex which makes

this code analysis intractable. Though automatically extract-

ing the wat-provenance of an arbitrary state machine is

difficult, many distributed systems components are designed

with simple and minimalistic APIs. We can take advantage

of this observation and sidestep the complexity of extract-
ing the wat-provenance from the implementation of a state

machine and instead specify the wat-provenance from the

interface of a state machine. To this end, we propose wat-
provenance specifications: functions that directly encode

the wat-provenance of a state machine using its interface

instead of its implementation. We describe the provenance

specifications of a number of widely used distributed sys-

tems components (e.g., Redis, Amazon S3, HDFS, Zookeeper)

and find that in practice, they are often straightforward to

implement.

Next, we present Watermelon: a prototype distributed de-

bugging framework that leverages the formal foundations

of wat-provenance and wat-provenance specifications. Wa-

termelon includes a mechanism for developers to write wat-

provenance specifications that are executed against the in-

put traces of the components in a distributed system. We

use Watermelon to measure the complexity of writing wat-

provenance specifications and also compare Watermelon to

existing distributed debugging techniques.

This paper presents the following contributions:

• We define wat-provenance: a formalism that extends

notions of data provenance to the realm of state ma-

chines in a distributed system.

• We present wat-provenance specifications: a mecha-

nism to compute the wat-provenance of distributed

system components. We also describe a set of wat-

provenance specifications for a number of widely used

distributed systems components, illustrating that wat-

provenance specifications can be straightforward to

write.

• We implement a prototype distributed debugger called

Watermelon that leverages the theoretical foundations

of wat-provenance. We demonstrate that Watermelon

makes it easier to identify the precise causes of events

in a distributed system compared to existing debugging

techniques.

2 BACKGROUND
2.1 Causality
As described by Lamport in [20], time is fundamental to our

understanding of how events are ordered. It is clear that if

an event occurs at 6:42, then it happens before another event
that occurs at 6:45. Unfortunately, accurately measuring time

in a distributed system is infeasible [26, 29, 30]. Clocks on

different servers within a distributed system drift apart, so

servers cannot agree on a single global notion of time, and

thus they cannot agree on a single global total order of events
that respects the real time ordering of events. However, as

Lamport showed in [20], it is possible for servers to agree

on a global partial order of events that respects the global
passage of time. This partial ordering of events also dictates

which events can causally affect each other.

To make this partial ordering and notion of causality pre-

cise, we consider a set of single-threaded servers that com-

municate over the network. Every server a serially executes
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a sequence of events a1,a2,a3, . . . where each event ai rep-
resents the action of server a either (1) performing local

computation, (2) sending a message to another server, or (3)

receiving a message from another server.

The happens before relation→ on events is the smallest

transitive relation such that (1) if ai ,aj are two distinct events
within the same process, then ai happens before aj , and
(2) if ai and bj are the sending and receiving of a message

respectively, then ai happens before bj . The happens before
relation is a partial order that formalizes our intuitive notion

of which events can causally affect each other. An event ai
can only be caused by an event bj that happens before it. The
set {bj | bj → ai } is called the causal history of ai .

2.2 Data Provenance
Given a relational database instance I , a relational algebra
queryQ , and a tuple t in the output of the query, it is natural

to ask why t appears in the output. For example, consider the

relational database instance given in Figure 1 that describes

users and friends in a social media application. And, consider

the relational algebra query

Q
def

= πname (σfriend1=ecodd (Users ▷◁username=friend2 Friends))

that returns the name of all of Edgar Codd’s friends. Evalu-

ating Q on I produces the tuple t = (Michael Jordan).

Users
username name
ecodd Edgar Codd

jumpman Michael Jordan

mlpro Michael Jordan

Friends
friend1 friend2
ecodd jumpman

ecodd mlpro

Figure 1: An example database instance

Intuitively, t = (Michael Jordan) is present in the output

Q (I ) for two reasons: (1) the existence of the (ecodd, jump-

man) and (jumpman, Michael Jordan) tuples and (2) the ex-

istence of the (ecodd, mlpro) and (mlpro, Michael Jordan)

tuples.Why-provenance [5, 7] formalizes this intuition. The

why-provenance
1
of a tuple t with respect to query Q and

database instance I , denotedWhy(Q , I ,t ), is a set J1, . . . , Jn
of subinstances of I where each subinstance Ji ⊆ I suffices

to produce t (i.e. t ∈ Q (Ji )). These subinstances are called
witnesses of t , and a witness Ji is called aminimal witness
of t if no proper subinstance of Ji is also a witness of t . The
minimal why-provenance of t , denotedMWhy(Q , I ,t ), is
the set of the minimal witnesses in Why(Q , I ,t ). It can be

shown that MWhy(Q , I ,t ) is exactly the set of minimal wit-

nesses of t [7].

1
For a formal definition of why-provenance, we refer the reader to [7]. For

our purposes, an informal understanding of why-provenance is sufficent.

Returning to our example above, the why-provenance of

the (Michael Jordan) tuple is the set {J1, J2} where

J1 = {(ecodd, jumpman), (jumpman,Michael Jordan)}

J2 = {(ecodd,mlpro), (mlpro,Michael Jordan)}

J1 and J2 are minimal witnesses, so the why-provenance and

minimal why-provenance of t = (Michael Jordan) are the

same.

2.3 State Machines
It is common to model servers—like key-value stores or

relational databases—as deterministic state machines that

repeatedly receive requests, update their state, and send

replies [21, 31]. More precisely, a deterministic state ma-
chine M = (S ,s0,Σ,Λ,δ ,ϵ ) consists of a (potentially infinite)

set S of states, a start state s0 ∈ S , an input alphabet Σ, an
output alphabet Λ, a transition function δ : S × Σ→ S , and
an output function ϵ : S × Σ→ Λ. A state machineM begins

in state s0 and repeatedly receives inputs a ∈ Σ. Upon receiv-

ing an input a,M transitions from state s to state δ (s,a) and
outputs ϵ (s,a).

In our work, we need to reason about specific sub-inputs

to a state machine, in the spirit of why-provenance, so we

introduce some notation here. We refer to an ordered se-

quence of inputs received by a state machine as a trace
T = a1a2 . . . an ∈ Σ∗. A subtrace T ′ of T is a subsequence

T ′ = ai1ai2 . . . aim where i1,i2, . . . ,im are distinct elements

of 1,2, . . . ,n in ascending order. Note that a subsequence

does not have to be contiguous. For example, T ′ = a1a3 is
a subtrace of T = a1a2a3a4. If T

′
is a subtrace of T , then a

supertrace of T ′ in T is a subtrace of T that contains every

element of T ′. If T1 and T2 are two traces, we write the con-

catenation ofT1 and T2 as T1T2. Similarly, if T ∈ Σ∗ is a trace,
and a ∈ Σ is an input, we letTa denote the trace produced by
appending a to the end of T . An illustrative example of the

definition of subtraces and supertraces is given in Figure 2.

a1a2a3a4

trace T

a1 a3
subtrace T ′

subtraces of T ′

a1 a3

a3

a1

supertraces of T ′ in T

a1 a3

a1a2a3

a1 a3a4

a1a2a3a4

Figure 2: Subtraces and supertraces

δ takes in a state s ∈ Σ and a single input a ∈ Σ. It is
convenient to extend δ to a function δ ∗ : S × Σ∗ → S that

takes in a state s and a trace T ∈ Σ∗ and outputs the state

reached after sequentially executing the inputs in T starting

in state s . Similarly, we can extend ϵ to a function ϵ : S ×
Σ+ → Λ which takes in a state s and a non-empty trace
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T = a1 . . . an ∈ Σ+ and returns ϵ (δ ∗ (s,a1a2 . . . an−1),an ):
the final output produced from sequentially executing every

input in T starting in state s .

3 WAT-PROVENANCE
3.1 A Motivating Example
It is difficult to reason precisely about the causes of events

in a heterogeneous distributed system. To best understand

why, let’s look at a simple example. Consider the imple-

mentation of a Facebook-like social media application called

ZardozBook, illustrated in Figure 3. ZardozBook users post

status updates, and these updates are only viewable by their

friends on the site. Users send requests to a load balancer

that forwards the requests to one of three weakly consistent

Redis-backed application servers: s1, s2, and s3. These appli-
cation servers store a cache of ZardozBook’s data in Redis

and periodically synchronize their caches with a centralized

Postgres database.

Consider a scenario in which Ava, a ZardozBook user,

has a falling out with Bob, a friend of hers on the site. Ava

unfriends Bob and then posts the status “Bob is a big jerk!”,

thinking that Bob will not see the status because he is no

longer her ZardozBook friend. Unfortunately, Bob later logs

in to ZardozBook and sees Ava’s mean comment!

Ava

Bob

Load

Balancer

Redis-Backed

App Servers

Postgres

s1

s2

s3

Figure 3: Social media application

Why did this happen? Here’s an informal account. Ava’s

request to unfriend Bob was forwarded to application server

s1 by the load balancer. Then, Ava’s request to post the mean

comment about Bob was forwarded to s2. s2 then pushed the

comment to the Postgres repository. s3 then issued a SQL

query to the Postgres repository, pulling the latest data into

its Redis cache. In doing so, it pulled in Ava’s mean comment.

Finally, when Bob logged in, his request was forwarded to s3
which returned the mean comment.

We argue that existing formalisms are inadequate for dis-

covering this sequence of events. One possibility is to use

causality, as described in Section 2. We could instrument our

distributed system to record the causal history of every event

that takes place in the system. Then, we could examine the

causal history of Bob’s request in an attempt to diagnose why

Bob was seeing Ava’s mean comment. Unfortunately, this is

not helpful. The causal history of Bob’s request includes ev-
ery event that causally precedes it, whether or not the event

is relevant. For example, the causal history of Bob’s request

would include every message received by server s3 prior to
Bob sending his request, even those that do not involve Ava

and Bob. The problem is that causality is too coarse-grained.

It fails to incorporate any notion of a system’s semantics as

a means to filter out irrelevant messages. Instead, it returns

an overapproximation of all the events that might cause an
event instead of the events that do cause an event.

This might prompt us to try and apply ideas from data

provenance. Unlike causality, why-provenance does incor-

porate system semantics to return the causes of a particular

output of a query. As discussed above, why-provenance has

two flaws. First is why-provenance’s restriction to relational

queries: while we might be able to use why-provenance to

debug s3’s SQL query that was sent to the Postgres database,

that is only one small piece of the puzzle. Understanding

why Bob saw Ava’s mean comment requires us to reason

about messages that travel through our application servers,

our Redis servers, and our load balancer. But, these are not

relational databases, so we cannot apply why-provenance to

them. Second and more fundamental is why-provenance’s

inability to reflect any notion of state change over time. In

particular, the real “why” question we want to answer here is

“why was the provenance of Bob’s query unaffected by Ava’s

unfriend request?” The why-provenance of Bob’s query has

no answer to this question; it knows nothing about updates

or the order in which they happen.

3.2 Defining Wat-Provenance
In isolation, causality and data provenance are both insuffi-

cient to diagnose why Bob saw Ava’s mean comment. Un-

derstanding the root cause of this anomalous behavior re-

quires us to reason about the ordering of events within the

network (as with causality) and the precise data dependen-

cies between different requests (as with data provenance).

Wat-provenance unifies the benefits of causality and data

provenance. Borrowing from causality, wat-provenance is

a general-purpose mechanism that can be applied to arbi-

trary state machines. Borrowing from why-provenance, wat-

provenance incorporates system semantics to produce the

causes of an event, rather than a conservative overapproxi-

mation.

More formally, we consider a deterministic state machine

M = (S ,s0,Σ,Λ,δ ,ϵ ), a trace T ∈ Σ∗, and a particular input

i ∈ Σ. The state machine begins in state s0 and executes T ,
transitioning to state sT = δ ∗ (s0,T ). It then executes input i
producing output o = ϵ∗ (s0,Ti ) = ϵ (sT ,i ). Wat-provenance
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aims to formalize an intuitive notion of why the state ma-

chineM produces output o when given input i . We build this

intuitive notion by way of a sequence of examples, ultimately

leading to the definition of wat-provenance.

Example 3.1. Consider a key-value server state machine

M with an input alphabet that consists of sets and gets to

integer-valued variables that are initially 0. Consider the

trace

T = set(x ,1); set(y,2)

that consists of two requests: one that sets the value of x
to 1 and one that sets the value of y to 2. Consider request

i = get(x ) that requests the value of x . When M processes

trace T and then input i , it expectedly outputs 1 (i.e. o =
ϵ∗ (s0,Ti ) = 1).

Why didM output 1? In this trivial example,M returned 1

as the value of x because the first request inT set x ’s value to
1. More formally, the subtrace T ′ = set(x ,1) of T suffices to

generate the output of 1 (i.e. ϵ∗ (s0,T
′i ) = o). The lesson here

is that the cause of an output o is a subtrace of the input
that is sufficient to generate o. We call such a subtrace a

witness of o.
However, the entire trace T is also a witness. That is, T

also suffices to generate an output of 1. But, the set(y,2)
request is not relevant to our get(x ) request, so we shouldn’t
include it as a cause of our output. Thus, we revise our earlier

observation; the cause of an output o is a subtrace of the
input that is sufficient to generate o and is also in some
sense minimal. We will define minimality more carefully

below.

Example 3.2. Consider a state machineM that stores a set

of boolean-valued variables that are initially false. Users can

set variables to true or false and can request thatM evaluate

a formula over these variables. For example, consider the

trace

T = set(a); set(b); set(c ); set(d )

that sets variables a,b,c,d to true. Further, consider the input

i = eval((a∧d )∨(b∧c )) that requestsM evaluate the formula

(a∧d ) ∨ (b ∧c ). o = ϵ∗ (s0,Ti ) is expectedly true; a,b,c,d are

all true, so the formula evaluates to true.

Why didM output true? Well, there are two reasons. The

first is the subtrace Tad = set(a); set(d ), and the second is

the subtrace Tbc = set(b); set(c ). Both of these subtraces are

witnesses of o, so we should include both in an explanation

of our output. We again revise the lesson from our previous

example; the cause of an output o is a set of witnesses
of o.

Example 3.3. Consider again the state machine M from

the previous example, and consider the trace

T = set(a); set(b); set(c )

and request i = eval((a ∧ ¬b) ∨ c ). o = ϵ∗ (s0,Ti ) is true.
a ∧ ¬b evaluates to false because ¬b is false, but c is true,
so (a ∧ ¬b) ∨ c is true. Why didM output true? Well, as we

just explained (a ∧ ¬b) ∨ c is true solely because c is true.
Thus, the subtraceTc = set(c ) should be the only explanation.
However, the subtrace Ta = set(a) is also a witness! If M
executes Ta and then i ,M will output true.

This is certainly not what we want. set(a) does not con-
tribute to our output, so it should be excluded. The problem

here is that the subtrace Ta does not include the set(b) re-
quest that ultimately keeps the set(a) request from satisfying

the formula. From this, we see that in order for a witness T ′

to be a good explanation of a particular output o, it must
be that every supertrace of T ′ in T is also a witness of
o.Tab = set(a); set(b) is a supertrace ofTa inT , butTab does

not suffice to generate o. Thus, a is not a valid witness.

Combining our lessons from Example 3.1, Example 3.2, and

Example 3.3, we arrive at our definition of wat-provenance.

Given a state machineM , an input traceT , an input i , and the
corresponding outputo = ϵ∗ (s0,Ti ), we say that a subtraceT

′

ofT is a witness of o if ϵ∗ (s0,T ′i ) = o. We say that a witness

T ′ of o is closed under supertrace in T if every supertrace

of T ′ in T is also a witness of o. LetWit(M ,T ,i ) be the set of
witnesses of o that are closed under supertrace inT . Thewat-
provenance of input i with respect toM and T , abbreviated
Wat(M ,T ,i ), is the set of minimal elements of Wit(M ,T ,i ).
That is, Wat(M ,T ,i ) consists of every witness T ′ of o such
that (1) T ′ is closed under supertrace in T , and (2) no proper

subtrace of T ′ is also a witness of o that satisfies (1)2. Note
that we formally define wat-provenance with respect to an

input i , but colloquially discuss wat-provenance with respect

to the corresponding output o.

3.3 Can I Get a Witness?
We now provide a few more simple examples involving wat-

provenance to illustrate the definition. In Section 4, we de-

scribe the wat-provenance of realistic services such as Redis,

Zookeeper, and S3.

Example 3.4. Consider again the key-value server state

machine from Example 3.1, the trace

T = a1a2a3 = set(x ,1); set(x ,2); set(x ,1)

and the input i = get(x ). o = ϵ∗ (s0,Ti ) = 1. To compute

Wat(M ,T ,i ) (the wat-provenance of o), we first compute

2
Note the subtlety that to find Wat(M,T , i ), we first list all the wit-

nesses of o that are closed under supertrace and then remove the

non-minimal elements. We do not list all the minimal witnesses and

then remove the ones that are not closed under supertrace in T . Infor-
mally, wat-provenance is minimal(closed_under_supertrace(witnesses)),

not closed_under_supertrace(minimal(witnesses)). These two are not the

same. See Example 3.5, for example.
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Wit(M ,T ,i ): the witnesses of o that are closed under super-

trace in T .
T3 = a3 = set(x ,1) suffices to generate o and is closed

under supertrace in T because the proper supertraces a1a3,
a2a3, and a1a2a3 all generate o. So, T3 ∈ Wit(M ,T ,i ). By a

similar line of reasoning, we also find that a1a3, a2a3, and
a1a2a3 are in Wit(M ,T ,i ).

The subtrace T1 = a1 = set(x ,1) is also a witness of o, but
it is not closed under supertrace in T because the supertrace

a1a2 = set(x ,1); set(x ,2) does not generate o. Thus, T1 is not
in Wit(M ,T ,i ) and therefore not in Wat(M ,T ,i ). Intuitively
this is correct because it is the second set(x ,1) command,

not the first, that causes the value of x to ultimately be 1.

All other subtraces of T are not witnesses of o. Thus,
Wit(M ,T ,i ) = {a3,a1a3,a2a3,a1a2a3} which has unique min-

imal element a3. Thus, Wat(M ,T ,i ) = {a3}.

Example 3.5. Consider again the key-value server state

machine from Example 3.1 and Example 3.4 with the input

alphabet expanded to include additions and subtractions to

a particular variable. Consider the trace

T = a1a2a3a4 = set(x ,42); add(x ,1); add(x ,2); sub(x ,3)

and the request i = get(x ). o = ϵ∗ (s0,Ti ) = 42.

Again, we computeWit(M ,T ,i ). T suffices to generate o,
and T does not have any proper supertraces in T , so it is

trivially closed under supertrace inT . Thus,T ∈ Wit(M ,T ,i ).
T1 = a1 = set(x ,42) is the only other witness of o, but T1 is
not closed under supertrace inT .T12 = set(x ,42); add(x ,1) is
a supertrace ofT1 but does not generateo. Thus,Wit(M ,T ,i ) =
Wat(M ,T ,i ) = {T }.

Note that we first compute the witnesses that are closed

under supertrace in T and then remove the non-minimal

elements. Imagine instead if we had first computed the min-

imal witnesses and then removed the elements that were

not closed under supertrace in T . We would have found

that the sole minimal witness of o was T1. Then, we would
have filtered out T1 because, as we just saw, it is not closed
under supertrace in T . This would leave us with an empty

wat-provenance!

Example 3.6. Consider a relational database state machine

M . The input alphabet ofM includes commands to insert a

tuple intoM and to execute a relational algebra query against

M . Initially, all relations are empty. Consider the trace

T = a1a2a3 = insert(R,t ); insert(R,u); insert(S ,u)

that inserts tuple t into relationR, inserts tupleu into relation

R, and inserts tuple u into relation S . Consider the request
i = query(R − S ) that queries the set difference R − S of R
and S . o = ϵ∗ (s0,Ti ) = {t } is the set of only the tuple t .

We first compute Wit(M ,T ,i ). There are only three wit-

nesses of o: a1, a1a3, and a1a2a3. a1 is not closed under su-

pertrace in T because the supertrace a1a2 does not gen-

erate o. The other two traces, a1a3 and a1a2a3, are closed

under supertrace. Thus, Wit(M ,T ,i ) = {a1a3,a1a2a3}, and
Wat(M ,T ,i ) = {a1a3}.

3.4 Wat-Provenance Properties
Example 3.1 through Example 3.6 demonstrate that our def-

inition of wat-provenance accurately models our intuition

about data provenance for state machines. We now discuss

how wat-provenance relates to why-provenance and causal-

ity.

Claim 1. Wat-provenance subsumes why-provenance.

Intuitively, wat-provenance generalizes why-provenance

from relational databases to arbitrary state machines. We

can formalize this intuition in the following way.

LetM be a general relational database state machine (first

introduced in Example 3.6) that allows for the insertions

of tuples and the execution of monotone relational queries

(i.e. queries composed of the monotone relational algebra

operators select, project, join and union). Let I be an arbitrary
database instance, and let T be a trace which inserts every

tuple in I . Let input i = in(t ,Q ) be an input which returns

a boolean that indicates whether tuple t is in the result of

evaluating query Q on instance I . Then, viewing a subtrace

T ′ as a subinstance I ′ ⊆ I , Wat(M ,T ,i ) = MWhy(Q , I ,t ).
Proving this fact is straightforward. If t < Q (I ), then

o = ϵ∗ (s0,Ti ) returns false and Wat(Q , I ,t ) consists only
of the empty trace, indicating that MWhy(Q , I ,t ) is empty.

Otherwise t ∈ Q (I ) and o returns true. Consider a witness
T ′ ∈ Wat(M ,T ,i ). T ′ suffices to generate o, so the corre-

sponding instance I ′ suffices to generate t . Moreover, because

Q is monotone and T does not contain any deletions, every

witness T ′ is closed under supertrace in T . Thus, T ′ (and
hence I ′) is a minimal witness. The proof of the converse—

showing that every I ′ ∈ MWhy(Q , I ,t ) has a corresponding
subtrace T ′ ∈ Wat(M , I ,t )—is symmetric.

Unfortunately, wat-provenance’s generality does not come

for free. Given a query Q , tuple t , and instance I , it is possi-
ble to automatically computeMWhy(Q , I ,t ) because queries
are constructed from a fixed set of simple relational opera-

tors. As we discuss in Section 4, it is normally intractable to

automatically compute the wat-provenance of a particular

state machine because, unlike relational queries, these state

machines can have arbitrarily complex semantics.

Claim 2. Wat-provenance refines causality.

While wat-provenance generalizes why-provenance, it re-
fines causality in the following sense. Consider a state ma-

chineM that executes a trace T and then an input request i .
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The causal history of i includes every single request inT (and

the causal history of every request in T ) whether or not the
request in T actually did influence the output of executing

request i . Wat-provenance instead returns the subtraces of

T that are actual causes.

Note that wat-provenance returns a set of witnesses that

are local to a particular node. Wat-provenance does not re-

turn the causal history of these witnesses, which includes

messages sent by other nodes in the distributed system. In

Section 5, we see how to enrich wat-provenance with this

information.

3.5 Limitations
To clarify the strengths of wat-provenance, we pause to

discuss its limitations.

Wat-provenance is not GDB. Wat-provenance is a high-

level debugging technique. It can be used to identify the

necessary and sufficient inputs that cause a state machine to

produce a particular output (the why), but unlike low-level
debugging tools like GDB, it cannot describe the details of

the code that actually produces a particular output (the how).
Tomake things concrete, consider again ourmotivating ex-

ample from Section 3.1 in which two of Ava’s requests were

reordered, allowing Bob to erroneously see Ava’s mean com-

ment. We can use wat-provenance to debug scenarios like

this one. These types of scenarios require us to reason about

which messages affect other messages, to reason about how

events are ordered with respect to one another, and to rea-

son about how data is transferred across multiple machines

across a span of time. On the other hand, wat-provenance

cannot help us understand why, for example, a particular

node is segfaulting; we need a lower-level tool like GDB for

this.

Thus, we view wat-provenance and GDB-like debuggers

as complementary. When debugging, a developer can use

wat-provenance to trace the root cause of a bug across a

system, narrowing their attention down to only the relevant

inputs. Then, if needed, they can use a low-level debugger

like GDB to discover the details of what’s going wrong.

Wat-provenance requires determinism. Wat-provenance is

defined with respect to deterministic state machines, yet

many pieces of code are nondeterministic. For example, the

behavior of many weakly consistent distributed systems

depend on the non-deterministic ordering of messages in the

network. Similarly, some load balancers intentionally use

randomness when deciding which machine should receive a

particular request. Wat-provenance specifications cannot be

applied to nondeterministic systems like these. We leave a

generalization of wat-provenance to nondeterministic state

machines as an interesting avenue for future work.

4 WAT-PROVENANCE SPECIFICATIONS
Now that we have defined wat-provenance, we turn to the

matter of computing it.

4.1 Provenance Specifications
Automatically computing the wat-provenance for an arbi-
trary distributed system component, which we dub a black
box, is often intractable and sometimes impossible. Com-

puting the wat-provenance of a black box requires that we

analyze the black box’s implementation to extract the rela-

tionships between the inputs and outputs of the black box. Be-

cause black box implementations can be large and complex,

this program analysis is almost always intractable. Worse,

we may not have access to the source code of the black box

at all. For example, cloud services like Amazon S3 or Google

Cloud Spanner have proprietary implementations. In this

case, automatically computing wat-provenance is impossible.

Though automatically computing the wat-provenance for

an arbitrary black box is intractable, we can take advantage

of the fact that many real-world black boxes are far from

arbitrary. Many black boxes have complex implementations

but are designed with very simple interfaces. This allows us

to sidestep the issue of inferring wat-provenance from an

implementation and instead specify wat-provenance directly

from an interface. That is, we can write a wat-provenance
specification: a function that—given a trace T and request

i—directly returns the wat-provenance Wat(M ,T ,i ) for a
black box modeled as state machineM .

For example, if we restrict our attention to the get and

set API of Redis, then the wat-provenance specification of

a get request is trivial: the wat-provenance of a get request

for key k includes only the most recent set to k . Redis is
implemented in over 50,000 lines of C. Analyzing this body

of code and inferring the wat-provenance of a get request is
infeasible using modern program analysis techniques. Wat-

provenance specification avoids this issue entirely and in-

stead specifies the wat-provenance in a single line of text.

Moreover, codifying this one-line wat-provenance specifi-

cation is expectedly straightforward. Wat-provenance speci-

fications are implemented as functions that take in a trace T
and an input i and return the wat-provenance of i . Thus, wat-
provenance specifications can be written in any program-

ming language and can use any language features available.

Wat-provenance specifications do not have to be written

using any special domain specific language or using any

restricted subset of a language.

As a simple example, we provide a Python implementa-

tion of the wat-provenance specification in Figure 4. The

specification, get_prov, takes in a trace T and a get request

i for key k . Redis requests are represented as objects of

type Request with subclasses GetRequest and SetRequest.
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get_prov iterates through the trace in reverse order, looking

for a set request to key k . If such a set request is found,

get_prov returns it. Otherwise, get_prov returns an empty

witness.

def get_prov(T: List[Request], i: GetRequest):

for a in reversed(T):

if (isinstance(a, SetRequest)

and a.key == i.key):

return {[a]}

return {[]}

Figure 4: A Python implementation of a Redis get re-
quest wat-provenance specification

In Section 5, we present a prototype implementation of

a system for writing wat-provenance specifications and de-

scribe the details of how the system collects traces. In this

section, we omit these details and focus on the concepts

behind wat-provenance specifications.

4.2 Examples
The wat-provenance specification of a Redis get request

is particularly simple, but in our experience this simplic-

ity is not completely uncommon. We now survey a variety

of commonly used black boxes that have relatively simple

wat-provenance specifications. Later, we discuss some black

boxes for which writing wat-provenance specifications is

more difficult.

Key-Value Stores. We have already seen a wat-provenance

specification for the get and set API of Redis. We can easily

extend our wat-provenance specification to handle more of

Redis’ API. For example, consider the operations append,
decr, decrby, incr, and incrby that all modify the value as-

sociated with a particular key. With these operations present

in a trace, the wat-provenance specification for a get re-

quest to key k now includes the most recent set to k and all

subsequent modifying operations to key k .

Object Stores. We can also write wat-provenance speci-

fications for storage systems that are more complex than

key-value stores. For example, consider an object store like

Amazon S3 where users can create, move, copy, list, and get

buckets and objects. The wat-provenance specification for

the get of an object o in bucket b includes the most recent

creation of the bucket b and the most recent creation of o. If a
bucket or object was created by a move, then the provenance

also includes the provenance of the moved bucket or object.

The wat-provenance of a request to list the contents of a

bucket includes the most recent creation of the bucket, the

most recent creation of every object in the bucket, and the

deletion of any object that was previously in the bucket.

Distributed File Systems. We can specify thewat-provenance

of a distributed file system like HDFS. A wat-provenance

specification of a request to read a byte range from a file

includes the most recent creation of the file, the most recent

creation of the parent directories of the file, and the most

recent writes that overlap with the requested byte range. If

the file was created by moving another file, then the wat-

provenance specification also includes the provenance of the

file that was moved.

Coordination Services. Systems use coordination services

like Apache Zookeeper [16] and Chubby [6] for leader elec-

tion, mutual exclusion, etc. Take Zookeeper as an example.

Zookeeper’s API resembles that of a file system; users can

create, delete, write, and read file-like objects called znodes.

Though the implementation of Zookeeper and HDFS are rad-

ically different, their APIs (and thus their wat-provenance

specifications) are similar. For example, the wat-provenance

specification of a request to read a znode includes the most

recent creation of the znode and the most recent creations

of all ancestor znodes.

Load Balancers. Consider a load balancer, like HAProxy,

that is balancing load across a set s1, . . . ,sn of n servers. Peri-

odically, a server si sends a heartbeat to the load balancer that
includes si ’s average load for the last five minutes. When-

ever the load balancer receives a message from a client, it

forwards the message to the server si that is least loaded.
Modelling the forwarding decision si as the output of the
load balancer, the wat-provenance specification for the for-

warding decision includes the most recent heartbeat message

from the least-loaded server.

Stateless Services. A stateless service is a service that can

be modelled as a state machine with a single state. Given a

request, a stateless service always produces the same reply,

no matter what other requests it has already serviced. For

example, a web server serving a static website is stateless; it

replies to all requests with the samewebsite.Wat-provenance

specifications of a stateless service are trivial. Requests are

completely independent, so the wat-provenance of any re-

quest consists only of the empty witness.

4.3 Limitations
Though wat-provenance specifications are often simple to

write, they are not a panacea. Here, we discuss some limita-

tions of wat-provenance specifications.

Complex wat-provenance specifications. There are some

black boxes for which writing a wat-provenance specifica-

tion is inherently very difficult. For example, consider a state

machine that implements an online support vector machine

(SVM) [4, 15, 22]. Clients can either (a) submit training data to
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the state machine to update the model or (b) submit test data

to the state machine for classification. The wat-provenance

of a classification request includes only the support vectors

of the model at the time of classification. Writing a wat-

provenance specification to identify these support vectors

is possible but very difficult. Such a wat-provenance specifi-

cation would likely be as complicated as the state machine

itself.

Buggy black boxes. We have thus far tacitly assumed that

black boxes like Redis faithfully implement their advertised

interfaces. However, if a black box is buggy and deviates from

its expected behavior, then a wat-provenance specification

will produce erroneous provenance. In other words, wat-

provenance specifications are written with respect to the

semantics of an abstract state machine. If a particular black

box does not concretely implement these semantics, then

the wat-provenance specification is incorrect.

5 WATERMELON
In this section, we present Watermelon: a prototype dis-

tributed debugging framework that leverages the theoretical

foundations of wat-provenance and wat-provenance specifi-

cations.

Watermelon uses wat-provenance specifications to gener-

ate the provenance of data as it transits through the black

box components of a distributed system. To write a wat-

provenance specification for a black box, a developer must

first wrap the black box in a Watermelon shim. A shim acts

as proxy, intercepting all inbound requests sent to a black

box and all outbound replies produced by a black box. Wa-

termelon shims provide two key pieces of functionality.

First, Watermelon shims are responsible for recording the

trace T of requests that are sent to a black box, as well as

the corresponding replies produced by the black box. These

traces are later used as the inputs to wat-provenance spec-

ifications. Currently, Watermelon shims persist traces in a

relational database.

Second,Watermelon shims implement a simple distributed

tracing service. Whenever a Watermelon shim receives a re-

quest, it records the address of the message’s sender along

with the request. Similarly, whenever a Watermelon shim

sends a request, it records the address of the message’s

destination. This enables a developer to integrate the wat-

provenance of multiple black boxes within a distributed sys-

tem. To find the cause of a particular black box output, we

invoke the black box’s wat-provenance specification. The

specification returns the set of witnesses that cause the out-

put. Then, we can trace a request in a witness back to the

black box that sent it and repeat the process, invoking the

sender’s wat-provenance specification to get a new set of

witnesses.

After a user has written a black box’s shim, they can write

the black box’s wat-provenance specification. Watermelon

wat-provenance specifications are simple scripts written in

a developer’s choice of either SQL or Python. Given a par-

ticular black box request, a wat-provenance script computes

the corresponding wat-provenance with respect to the black

box’s trace (which is persisted in a relational database by the

black box’s shim).

6 EVALUATION
In this section, we answer two questions: (1) How difficult is

it to write wat-provenance specifications? and (2) How do

wat-provenance and wat-provenance specifications compare

to other debugging techniques? We answer question 1 in

Section 6.1 and question 2 in Section 6.2.

6.1 Wat-Provenance Specifications
In Section 4, we argued thatmany commonly used distributed

system components have relatively simple wat-provenance

specifications. In this subsection, we substantiate our argu-

ment with concrete wat-provenance specifications for Re-

dis, a subset of the POSIX file system API, Amazon S3, and

Zookeeper. We implemented these wat-provenance speci-

fications using Watermelon. Table 1 lists the language in

which we wrote each provenance specification, the lines of

code required to write each specification, the number of APIs

supported by each specification, and the API supported by

each specification.

We found it simple to write wat-provenance specifications

for 17 of the 20 APIs. We found specifying three of the APIs

slightly more challenging, but still relatively straightforward.

First, specifying the read of a byte range in a file system re-

quired us to find the most recent write to each segment of the

byte range. This required us to scan backwards through the

trace, maintaining a disjoint set of byte ranges. Second, spec-

ifying the catting and listing of objects in Amazon S3 was

complicated by the fact that objects could be moved across

buckets. Thus, computing the wat-provenance required com-

puting the transitive wat-provenance of objects that have

been moved and copied.

As we discussed in Section 4.3, this does not mean that all
black boxes have simple wat-provenance specifications, but

it corroborates the claim that many commonly used black

boxes do.

6.2 Debugging with Wat-Provenance
How do wat-provenance and wat-provenance specifications

compare to other debugging techniques? We answer this

question by comparing Watermelon, our prototype wat-

provenance debugger, against two other debugging tech-

niques: SPADE [12] and printf debugging. We qualitatively
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Table 1: Watermelon wat-provenance specifications

System Language LOC Number of APIs Supported API

Redis SQL 30 9 get, set, del, append, incr, decr, incrby, decrby, strlen

POSIX Python 88 2 reading and writing byte ranges

Amazon S3 Python 200 5 creating, copying, catting, removing, and listing objects and buckets

Zookeeper SQL 70 4 creating, reading, writing, and listing znodes

evaluate the three debugging techniques using four metrics—

ease of adoption, runtime overhead, high-level debugging

support, and low-level debugging support—which we will

explain momentarily. This qualitative analysis is summarized

in Table 2.

6.2.1 SPADE. SPADE [12] is a framework that collects

provenance information from arbitrary black boxes in a dis-

tributed system. SPADE collects provenance information

from a variety of sources including operating system audit

logs, network artifacts, LLVM instrumented applications,

and applications dynamically instrumented for taint anal-

ysis. These techniques are the current state of the art in

extracting the provenance of unmodified black boxes. For

the sake of brevity, we will focus only on the provenance

that SPADE collects from operating system audit logs and

LLVM instrumented applications.

Ease of Adoption. Our first metric, ease of adoption, is a
measure of how difficult it is for a developer to set up the in-

frastructure required to use a particular debugging technique.

Ease-of-adoption does not include the difficulty of actually

debugging using a debugging technique; it only includes the

difficulty of making a system amenable to the debugging

technique. The ease of adoption of SPADE, for example, is

very low. For SPADE to collect operating system audit logs,

binaries can be run unmodified. To collect LLVM call graphs,

binaries have to be compiled with LLVM instrumentation,

but the code itself remains unchanged.

RuntimeOverhead. Our secondmetric, runtime overhead,
is a measure of the performance overheads that a debugging

technique imposes on a system. When SPADE collects op-

erating system audit logs, it imposes a negligible amount of

runtime overhead, as operating system audit logs are created

whether or not SPADE is being used. LLVM instrumented bi-

naries, on the other hand, run significantly slower than their

uninstrumented counterparts. As a simple example, on an

Amazon EC2 m5.xlarge instance, we measured that a single

Redis client required 2.45 seconds to send 100,000 synchro-

nous PING operations to a default configured Redis server

running on the same machine. When we compiled the Redis

server with LLVM instrumentation, the client required 29.76

seconds, an order of magnitude decrease in throughput.

High- and Low-Level Debugging Support. Our third and

fourth metrics, high-level debugging support and low-
level debugging support, are measures of whether a de-

bugging technique facilitates high-level and low-level debug-

ging. As we described in Section 3.5, high-level debugging

involves understanding which events in a distributed system

cause each other, how events are ordered with respect to

one another, etc. Conversely, low-level debugging involves

reasoning about the details of how a particular program

executes.

We ran SPADE—with audit logging and LLVM instrumen-

tation enabled—against a trivial workload consisting of a

single set and get to Redis. SPADE produced 1,087 audit

log provenance entries and 1,118,764 LLVM instrumenta-

tion provenance entries. High-level debugging with either

of these sources of provenance is difficult due to the prove-

nance’s size and detailed nature. Understanding the reported

provenance requires either an understanding of how par-

ticular syscalls relate to Redis’ source code (for audit logs)

or a detailed understanding of Redis’ implementation (for

LLVM instrumentation). Low-level debugging with audit

logs is challenging, because the audit logs lack information

about the execution of the code being debugged (besides the

syscalls that it makes). Low-level debugging with LLVM in-

strumentation is easier but still challenging due to the sheer

volume of provenance information produced.

6.2.2 printf Debugging. “printf debugging” is the ad-
hoc debugging technique in which a developer adds printf
statements (or log statements) to the various components of a

distributed system and then debugs the system by analyzing

the resulting logs.

Ease of Adoption. The ease of implementing printf debug-
ging depends on (a) how many log statements a developer

wants to add and (b) the piece of code to which a developer

wants to add log statements. It is relatively easy for a de-

veloper to add logging to a piece of code that they wrote

because they know where and what to log. If the code is a

complex piece of open source software (e.g. Apache Cassan-

dra, Apache Zookeeper), then adding log statements requires

understanding at least part of the software’s implementation.
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Table 2: A qualitative comparison of debugging techniques

Debugging Technique Ease Of Adoption Runtime Overheads Supports High-Level

Debugging

Supports Low-Level

Debugging

SPADE (Audit Logs) easy low no some

SPADE (LLVM) easy high no yes

printf Debugging easy–impossible low some yes

Watermelon easy–hard medium yes no

If the code is closed-source (e.g. Cloud Spanner, Amazon

Redshift), then adding log statements is impossible.

Runtime Overheads. The overheads of logging are typically
negligible compared to heavier weight techniques like LLVM

instrumentation or Watermelon shims.

High- and Low-Level Debugging Support. The ability to

perform high- and low-level debugging with log statements

is challenging to characterize. It varies from easy to diffi-

cult based on the complexity of the bug being debugged, the

quantity and quality of logs, etc. Still, for high-level debug-

ging, there is an unavoidable burden imposed by printf
debugging. Developers have to make sure enough informa-

tion is logged, collect logs from a number of machines (some

of which might have crashed), filter out irrelevant entries

from the potentially voluminous logs, and trace data across

multiple logs.

6.2.3 Watermelon.

Ease of Adoption. To adopt Watermelon, a developer must

first write wat-provenance specifications for each compo-

nent in the system. As we discussed, many distributed system

components have relatively simple wat-provenance speci-

fications for which adopting Watermelon is relatively easy,

while some components have very complex wat-provenance

specifications that make Watermelon more challenging to

adopt.

Runtime Overheads. Watermelon shims introduce a non-

negligible amount of runtime overhead by intercepting net-

work messages and periodically persisting traces. We mea-

sured the performance overheads of Watermelon shims on

trivial workload in which a Redis client performs a series

of SET operations against a Redis server. Watermelon shims

decreased the system’s throughput by 41.4%. While some of

this performance degradation is an artifact of our prototype,

some is inherent to shims.

High- and Low-Level Debugging Support. Watermelon’s

greatest strength is that it makes high-level debugging easy.

Wat-provenance formalizes the intuitive notion of which

inputs in a distributed system cause a particular output. Wat-

provenance specifications allow a developer to codify these

intuitions and automatically use them to filter irrelevant

information when debugging. By refining causality, wat-

provenance also allows developers to reason about the or-

dering of events in a distributed system without having to

manually trace events through a set of logs. Conversely, Wa-

termelon must be paired with another system to support

low-level debugging.

As a simple experiment, we again ran our trivial workload

consisting of a single set and get to Redis. Whereas SPADE

produced 1,089 audit log provenance entries and 1,118,764

LLVM instrumentation provenance entries, Watermelon pro-

duced 8 provenance entries: the get and set request and

response recorded on the client and the server.

7 RELATEDWORK
Data Provenance. When discussing data provenance, we

have focused primarily onwhy-provenance, aswat-provenance

is a generalization of why-provenance. However, there are

other forms of data provenance. How-provenance [13] for-

malizes not only why a particular output is produced by a

relational query, but also how.Where-provenance [5] formal-

izes the set of input attributes that contribute to an output

attribute. In [8], Cui et al. provide algorithms for computing

the provenance of more generic data transformation oper-

ators that satisfy certain properties (e.g., homomorphisms,

aggregators). In [36], Woodruff et al. use weak inverse func-

tions to compute the provenance of generic operators. Why-,

how-, and where-provenance are all limited to the domain

of relational queries, and all five forms of provenance are

limited to the domain of data transformations applied to

static data. Wat-provenance is applicable to state machines

with state that varies over time.

Black Box Provenance. RDataTracker [23], noWorkflow

[27], and SPADE [12] are frameworks that attempt to record

the provenance of data through an arbitrary black box using

general purpose low-level provenance tracing techniques.

RDataTracker and noWorkflow use reflection and runtime in-

formation to track the provenance of data through minimally

annotated R and Python scripts. SPADE collects provenance
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information from operating system audit logs, network ar-

tifacts, LLVM instrumented applications, and applications

dynamically instrumented for taint analysis. The benefit of

these frameworks is their generality. However, their general-

ity comes at the cost of verbosity. These provenance frame-

works produce a large amount of low-level implementation-

specific provenance information that can be challenging to

interpret.

Data-Dependent Process Provenance. Adata-dependent pro-

cess (DDP) is a finite state machine that evaluates queries

against a relational database to determine some transitions

and uses external requests to trigger other transitions [9,

10]. In [9] and [10], Deutch et al. extend provenance semir-

ings [13] to linear temporal logic formulas issued against

a DDP. Both DDP provenance and wat-provenance aim to

extend traditional data provenance to state machines, but

they do so in very different ways. DDP provenance is used

to explain how particular execution traces may arise. Wat-

provenance, on the other hand, aims to explain why a state

machine generates a particular output with respect to a fixed

trace of inputs.

Network Provenance. Network provenance was originally

introduced in [41] as a generalization of data provenance to

programs written in the extended relational language ND-

Log [25]. ExSPAN [41] and DistTape [40] are two accompa-

nying implementations that record the network provenance

of a distributed system implemented in NDLog. The network

provenance of a piece of data is tied to the particular NDLog

program that created it, whereas wat-provenance is defined

with respect to abstract state machines instead of concrete

implementations. As a result, network provenance provides

finer grained debugging information than wat-provenance,

but is applicable only to systems written in NDLog. Wat-

provenance provides coarser grained debugging information,

but is applicable to arbitrary state machines.

Scientific Workflow Systems. Scientific workflow systems

like Taverna [35], Kepler [1], Pegasus [19], and Swift [37]

can be used to structure complex computational tasks as a

graph, composing tasks by connecting the outputs of one

task to the inputs of another. These systems are limited to the

workflow languages that they support, and these languages

are not typically used to build distributed systems. They

also assume that the inputs to a workflow are static. Wat-

provenance formalizes provenance for arbitrary distributed

systems composed of time-varying state machines.

DISC Provenance. Data intensive scalable computing (DISC)

frameworks like Apache Hadoop [32] and Apache Spark [38]

can execute data-parallel programs on massive amounts

of data both efficiently and with fault tolerance. Work on

GMRW provenance [17] and systems like BigDebug [14],

Titian [18], RAMP [28], and Newt [24] augment DISC frame-

works with data provenance. Unlike wat-provenance, DISC

provenance is restricted to the domain of data intensive com-

putations over static data and cannot be applied to other

distributed systems components like storage systems, co-

ordination services, load balancers, etc. DISC provenance

frameworks take advantage of operator interfaces (e.g., map,

filter, aggregate) to construct lineage of arbitrary operator im-

plementations similar to how wat-provenance specifications

are written against high-level interfaces instead of imple-

mentations.

Distributed Tracing Tools. Distributed tracing tools like

Dapper [33], X-trace [11], Magpie [3], Stardust [34], and

lprof [39] allow programmers to trace messages through

large and complex distributed systems that span multiple

nodes and administrative domains. The fundamental dis-

tinction between distributed traces and wat-provenance is

that distributed traces do not carry historical information

that link prior inputs to present outputs. For example, traces

may show you which clients contacted a key-value store

and when, but they will not show you which requests wrote

the values that later requests read back. Also note that lprof,

unlike other tracing tools, constructs traces by analyzing sys-

tems’ existing logs. In the future, we plan to explore whether

we can use a similar technique to construct traces.

8 CONCLUSION
This paper identified inadequacies in existing formalisms

used to reason about the causes of events in distributed sys-

tems. Causality overapproximates the true cause of an event,

and data provenance is restricted to the domain of static (typ-

ically relational) data. We then presented wat-provenance: a

novel form of provenance that generalizes why-provenance

and refines causality. We then discussed how to sidestep the

complexity of automatic wat-provenance extraction with

wat-provenance specifications written against the high-level

API of a black box.
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