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Abstract
Quorum systems are a powerful mechanism for ensuring
the consistency of replicated data. Production systems usu-
ally opt for majority quorums due to their simplicity and
fault tolerance, but majority quorum systems provide poor
throughput and scalability. Alternatively, researchers have
invented a number of theoretically “optimal” quorum sys-
tems, but the underlying theory ignores many practical com-
plexities such as machine heterogeneity and workload skew.
In this paper, we conduct a pragmatic re-examination of
quorum systems. We enrich the current theory on quorum
systems with a number of practical refinements to find quo-
rum systems that provide higher throughput, lower latency,
and lower network load. We also develop a library Quo-
racle that precisely quantifies the available trade-offs be-
tween quorum systems to empower engineers to find opti-
mal quorum systems, given a set of objectives for specific
deployments and workloads. Our tool is available online at:
https://github.com/mwhittaker/quoracle.

CCSConcepts: •Computer systems organization→Re-
liability; Availability; Redundancy; • Software and its
engineering→ Cloud computing.
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1 Introduction
Ensuring the consistency of replicated data is a fundamental
challenge in distributed computing. One widely utilized so-
lution is to require that any operation over replicated data
involve a quorum of machines. A read-write quorum sys-
tem consists of a set of read quorums and a set of write
quorums such that every read quorum and every write quo-
rum intersect. Data is read from a read quorum of machines,
and data is written to a write quorum of machines. This
ensures that all previous writes are observed by subsequent
reads. In addition to data replication [10], quorum systems
have been applied to consensus algorithms [5, 8, 12, 17],
distributed databases [26], abstract data types [11], mutual
exclusion [2, 19] and shared memory [3] to name but a few.

Majority quorum systems—quorum systems where ev-
ery read and write quorum consists of a strict majority
of machines—are widely used in practice. Their simplicity
makes them well-understood, and they also tolerate an opti-
mal number of faults,

⌊
n−1
2

⌋
with n machines. However, the

performance of majority quorum systems is far from ideal.
If each machine can process α commands per second then
the maximum throughput of a majority quorum system is
limited to just 2α , regardless of the number of machines [23].

The academic literature has responded by proposing many
quorum systems including Crumbling Walls [24], Trees [1],
weighted voting [9, 10], multi-dimensional voting [6], Fi-
nite Projective Planes [19], Hierarchies [15], Grids [7], and
Paths [23]. These sophisticated quorum systems are rarely
used for two reasons. First, the theory behind these quo-
rum systems ignores many practical considerations such
as machine heterogeneity, workload skew, latency, and net-
work load. As we show in Section 4, “theoretically optimal”
quorum systems often underperform in practice. Second,
understanding the various quorum systems and choosing
the one that is optimal for a given workload is difficult and
sensitive to workload parameters.

This paper is a practical re-examination of read-write quo-
rum systems. We revisit the mathematical theory of quorum
systems with a pragmatic lens and the ambition to make less-
frequently used quorum systems more broadly accessible to
the engineering community. More concretely, we make the
following contributions:
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1. We add a number of practical refinements to the theory of
read-write quorum systems (§2). We extend definitions to
accommodate heterogeneous machines and shifting work-
loads; we introduce the notion of f -resilient strategies to
make it easier to trade off performance for fault tolerance;
and we integrate metrics of latency and network load (§3).

2. We develop a Python library, called Quoracle (Quorum
Oracle), that allows users to model, analyze, and optimize
read-write quorum systems (§3). We also provide a heuris-
tic search procedure to find quorum systems that are opti-
mizedwith respect to a number of user provided objectives
and constraints. Given the complex trade-off space, we be-
lieve that using an automated assistance library like ours
is the only realistic way to find good quorum systems.

3. We perform a case study showing how to use Quoracle to
find quorum systems that provide 2× higher throughput
or 3× lower latency than naive majority quorums (§4).

2 Definitions
In this section, we present definitions adapted from the ex-
isting theory on quorum systems [13, 23].

2.1 Read-Write Quorum Systems
Given a set X = {x1, . . . ,xn }, a read-write quorum sys-
tem [23] over X is a pair Q = (R,W ) where

1. R is a set of subsets of X called read quorums,
2. W is a set of subsets of X called write quorums, and
3. every read quorum intersects every write quorum.

That is, for every r ∈ R andw ∈W , r ∩w , ∅.1

For example, the majority quorum system over the setX =
{a,b,c} isQmaj = (R,W ) where R =W = {{a,b}, {b,c}, {a,c}}.
If every read quorum intersects every write quorum, then
any superset of a read quorum intersects any superset of
a write quorum. Thus, if a set r is a superset of any read
quorum in R, we consider r a read quorum as well. Similarly,
if a setw is a superset of any write quorum inW , we consider
w a write quorum. For example, we consider the set {a,b,c}
a read and write quorum ofQmaj even though the set {a,b,c}
is not listed explicitly in R orW .
It is notationally convenient to denote sets of read and

write quorums over a set X as boolean expressions over
X [13]. For example, we can represent the set {{a,b}, {b,c},
{a,c}} as the expression (a ∧ b) ∨ (b ∧ c ) ∨ (a ∧ c ), which
we abbreviate as ab + bc + ac . Equivalently, we can express
the set as a(b + c ) + bc , b (a + c ) + ac , or c (a + b) + ab. As
another example, consider the 2 by 3 grid quorum system
Q2×3 over the set X = {a,b,c,d ,e, f } as shown in Figure 1.
Every row is a read quorum, and every column is a write
quorum. Concretely, Q2×3 = (abc + de f , ad + be + c f ).

1Note that some papers (e.g. [7, 15]) use a more restrictive definition of
read-write quorum systems which additionally requires that any two write
quorums intersect.

a b c

d e f

(a) Read quorums abc + de f

a b c

d e f

(b) Write quorums ad + be + c f

Figure 1. The 2 by 3 grid quorum system Q2×3.

In practice, X might be a set of machines, a set of locks, a
set of memory locations, and so on. In this paper, we assume
that X is a set of machines we call nodes. We assume that
protocols contact a read quorum of nodes to perform a read
and contact a write quorum of nodes to perform a write.

2.2 Fault Tolerance
Unfortunately machines fail, and when they do, some quo-
rums become unavailable. For example, if node a from the 2
by 3 grid quorum system Q2×3 fails, then the read quorum
{a,b,c} and thewrite quorum {a,d } are unavailable. The read
fault tolerance of a quorum system is the largest number
f such that despite the failure of any f nodes, some read
quorum is still available.Write fault tolerance is defined
similarly, and the fault tolerance of a quorum system is
the minimum of its read and write fault tolerance. For exam-
ple, the read fault tolerance of Q2×3 is 1 and the write fault
tolerance is 2, so the fault tolerance is 1.

2.3 Load & Capacity
A protocol uses a strategy to decide which quorums to con-
tact when executing reads and writes [23]. Formally, a strat-
egy for a quorum system Q = (R,W ) is a pair σ = (σR ,σW )
where σR : R → [0,1] and σW :W → [0,1] are discrete prob-
ability distributions over the quorums of R andW . σR (r )
is the probability of choosing read quorum r , and σW (w )
is the probability of choosing write quorumw . A uniform
strategy is one where each quorum is equally likely to be
chosen (i.e. σR (r ) = 1

|R | , σW (w ) = 1
|W | for every r andw).

For a node x ∈ X , let loadσR (x ) be the probability that
x is chosen by σR (i.e. the probability that σR chooses a
read quorum that contains x). This is called the read load
on x . Define loadσW (x ), the write load, similarly. Given a
workload with a read fraction fr of reads, the load on x is
the probability that x is chosen by strategy σ and is equal to
fr loadσR (x ) + (1 − fr )loadσW (x ).
The most heavily loaded node is a throughput bottleneck,

and its load is what we call the load of the strategy. The
load of a quorum system is the load of the optimal strategy
(i.e. the strategy that achieves the lowest load). If a quorum
system has load L, then the inverse of the load, 1

L , is called
the capacity of the quorum system. The capacity of a quo-
rum system is directly proportional to the quorum system’s
maximum achievable throughput.
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For example, consider a 100% read workload (i.e. a work-
load with read fraction fr = 1) and consider again the grid
quorum system Q2×3 in Figure 1. The optimal strategy is
a uniform strategy that selects both read quorums equally
likely. Thus, the load of Q2×3 is 1

2 , and its capacity is 2. If
every node can process α commands per second, then the
quorum system can process 2α commands per second in
aggregate. Alternatively, consider a 100% write workload
with a read fraction fr = 0. The optimal strategy is again
uniform. Because there are three write quorums, the load
is 1

3 , and the capacity is 3. The quorum system can process
3α commands per second under this workload. Finally, with
fr =

1
2 (i.e. a workload with 50% reads and 50% writes), the

quorum system’s capacity is 12
5 .

3 Practical Refinements in Quoracle
In this section, we augment the theory of read-write quo-
rum systems with a number of practical considerations and
demonstrate their use in our Python library Quoracle.

3.1 Quorum Systems, Capacity, Fault Tolerance
Quoracle allows users to form arbitrary read-write quorum
systems and compute their capacity and fault tolerance. For
example, in Figure 2, we construct and analyze the majority
quorum system on nodes {a,b,c}. As in Section 2.1, read-
write quorum systems are constructed from a set of read or
write quorums expressed as a boolean expression over the
set of nodes.

a, b, c = Node('a'), Node('b'), Node('c')
majority = QuorumSystem(reads=a*b + b*c + a*c)
print(majority.fault_tolerance()) # 1
print(majority.load(read_fraction=1)) # 2/3
print(majority.capacity(read_fraction=1)) # 3/2

Figure 2. Quorum systems, capacity, and fault tolerance.

Note that the user only has to specify one set of quorums
rather than both because we automatically construct the
optimal set of complementary quorums using the existing
body of literature that relates read-write quorum systems
to monotone boolean functions [13]. Specifically, given a
boolean expression e , the dual of e , denoted dual(e ) is the
expression formed by swapping logical and (∧) with logical
or (∨) in e . For example, dual(ab) = a + b, dual(a + b) = ab,
and dual(a(b+c )+de ) = (a+bc ) (d+e ). As described in [13],
given a boolean expression eR representing a set of read quo-
rums over a set X , the optimal set of complementary write
quorums is eW = dual(eR ). Similarly, given an expression
eW representing a set of write quorums, the optimal set of
complementary read quorums is eR = dual(eW ). This is how
Quoracle computes write quorums when only a set of read
quorums is given (and vice versa).

Quoracle computes the load of a quorum system using
linear programming [23]. Specifically, given a read-write quo-
rum systemQ = (R,W ) over a setX with read fraction fr , we
introduce a load variable L, a variable pr for every r ∈ R, and
a variable pw for everyw ∈W . The linear program computes
the optimal strategy σ ∗ = (σ ∗R ,σ

∗
W ). L represents the load of

σ ∗, pr represents σ ∗R (r ), and pw represents σ ∗W (w ). The linear
program minimizes L with the following constraints. First,
0 ≤ pr ,pw ≤ 1 for every pr and pw . Second,

∑
r ∈R pr = 1

and ∑w ∈W pw = 1. These two constraints ensure that strate-
gies σ ∗R and σ ∗W are valid probability distributions. Third, for
every x ∈ X ,

fr
*.
,

∑
{r ∈R | x ∈r }

pr
+/
-
+ (1 − fr )

*.
,

∑
{w ∈W | x ∈w }

pw
+/
-
≤ L

This constraint ensures that the load on node x is less than
or equal to L.
Quoracle computes the fault tolerance of a quorum sys-

tem using integer programming. First, we form an integer
program to compute read fault tolerance. We introduce a
variable vx ∈ {0,1} for every x ∈ X . Intuitively, if vx = 1,
it means node x has failed, and if vx = 0, it means node x
is alive. We minimize ∑x ∈X vx with the constraint that for
every r ∈ R, ∑x ∈r vx ≥ 1. By minimizing ∑x ∈X vx , we try
to fail as few nodes as possible. The constraint ∑x ∈r vx ≥ 1
ensures that at least one node from r has failed. We then
compute the read fault tolerance as f = (

∑
x ∈X vx )− 1. f + 1

is the minimum number of nodes we can fail to eliminate all
read quorums, so the quorum system can tolerate as many
as f failures. We solve for the write fault tolerance in the
same way. The fault tolerance is the minimum of the read
and write fault tolerance.

3.2 Heterogeneous Nodes
Quorum system theory implicitly assumes that all nodes are
equal. In reality, nodes are often heterogeneous. Some are
fast, and some are slow. Moreover, nodes can often process
more reads per second than writes per second. We revise
the theory by associating every node x with its read and
write capacity, i.e. the maximum number of reads and writes
the node can process per second. We redefine the read load
imposed by a strategy σ = (σR ,σW ) on a node x as the prob-
ability that σR chooses x divided by the read capacity of x .
We redefine the write load similarly. By normalizing a node’s
load with its capacity, we get a more intuitive definition of a
quorum system’s capacity. Now, the capacity of a quorum
system is the maximum throughput that it can support.
Quoracle allows users to annotate nodes with read and

write capacities. For example, in Figure 3, we construct a 2
by 2 grid quorum system where nodes a and b can process
100 writes per second, but nodes c and d can only process
50 writes per second. We also specify that every node can
process reads twice as fast as writes. With a read fraction of
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1, the quorum system has a capacity of 300 commands per
second using a strategy that picks the read quorum {a,b}
twice as often as the read quorum {c,d }. As we decrease
the fraction of reads, the capacity decreases since the nodes
process reads faster than writes.

a = Node('a', write_cap=100, read_cap=200)
b = Node('b', write_cap=100, read_cap=200)
c = Node('c', write_cap=50, read_cap=100)
d = Node('d', write_cap=50, read_cap=100)
grid = QuorumSystem(reads=a*b + c*d)
print(grid.capacity(read_fraction=1)) # 300
print(grid.capacity(read_fraction=0.5)) # 200
print(grid.capacity(read_fraction=0)) # 100

Figure 3. Heterogeneous nodes with different capacities.

To compute the load and capacity of a read-write quorum
systems with different read and write capacities, Quoracle
modifies its linear program by normalizing every node’s load
by its capacity. Specifically, for every node x ∈ X , it uses
the following constraint where capR (x ) and capW (x ) are the
read and write capacities of node x :

*.
,

fr
capR (x )

∑
{r ∈R | x ∈r }

pr
+/
-
+
*.
,

1 − fr
capW (x )

∑
{w ∈W | x ∈w }

pw
+/
-
≤ L

3.3 Workload Distributions
Capacity is defined with respect to a fixed read and write
fraction, but in reality, workloads skew. To accommodate
workload skew, we consider a discrete probability distribu-
tion over a set of read fractions and redefine the capacity of a
quorum system to be the capacity of the strategy σ that max-
imizes the expected capacity with respect to the distribution.
For example, in Figure 4, we construct the quorum system
with read quorums ac + bd , and we define a workload that
has 0% reads 10

18 th of the time, 25% reads 4
18 th of the time,

and so on. In Figure 4, we see the optimal strategy σ has an
expected capacity of 159 commands per second.

grid = QuorumSystem(reads=a*c + b*d)
fr = {0.00: 10/18, 0.25: 4/18, 0.50: 2/18,

0.75: 1/18, 1.00: 1/18}
sigma = grid.strategy(read_fraction=fr)
print(sigma.capacity(read_fraction=fr)) # 159

Figure 4. A distribution of read fractions.

In Figure 5, we plot strategy σ ’s capacity as a function of
read fraction. We also plot the capacities of strategies σ0.0,
σ0.25, σ0.50, σ0.75, and σ1.0 where σfr is the strategy optimized
for a fixed workload with a read fraction of fr . We see that
strategy σ does not always achieve the maximum capacity
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Read Fraction

50

100

150

200

Ca
pa

cit
y 

(c
om

m
an

ds
 p

er
 se

co
nd

)

0.0

0.25

0.5

0.75

1.0

Figure 5. Strategy capacities with respect to read fraction

for any individual read fraction, but it achieves the best
expected capacity across the distribution.
Note that strategy σ performs well across all workloads

drawn from the distribution without having to know the
current read fraction. Alternatively, if we are able to monitor
the workload and deduce the current read fraction, we can
pre-compute a set of strategies that are optimized for various
read fractions and dynamically select the one that is best for
the current workload.

To compute the load and capacity of a read-write quorum
system with a distribution of read fractions, Quoracle again
modifies its linear program. Rather than minimizing a single
load variable L, we have one load variable Lfr for every pos-
sible value of fr and minimize their sum, weighted according
to their distribution. For every node x ∈ X and every value
of read fraction fr , the linear program has the constraint:

*.
,

fr
capR (x )

∑
{r ∈R | x ∈r }

pr
+/
-
+
*.
,

1 − fr
capW (x )

∑
{w ∈W | x ∈w }

pw
+/
-
≤ Lfr

3.4 f -resilient Strategies
Many protocols that deploy read-write quorum systems ac-
tually contact more nodes than is strictly necessary when
executing a read or a write. Rather than contacting a quorum
to perform a read or write, these protocols contact every
node. Contacting every node leads to suboptimal capacity,
but it is less sensitive to stragglers and node failures. For
example, if we contact only a quorum of nodes and one of
the nodes in the quorum fails, then we have to detect the
failure and contact a different quorum. This can be slow and
costly. Typically, industry practitioners have chosen between
these two extremes: either send messages to every node or
send messages to the bare minimum number of nodes (i.e. a
quorum) [4, 14, 16, 18, 22, 25]. We introduce the notion of f -
resilient strategies to show that this is not a binary decision,
but rather a continuous trade-off.

4
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Given a quorum system (R,W ), we say a read quorum
r ∈ R is f -resilient for some integer f if despite removing
any f nodes from r , r is still a read quorum. We define f -
resilience for write quorums similarly. We say a strategy σ
is f -resilient if it only selects f -resilient read and write
quorums. An f -resilient strategy can tolerate any f failures
or stragglers. The value of f captures the continuous trade-
off between capacity and resilience. As we increase f , we
decrease capacity but increase resilience.

Quoracle allows users to compute optimal f -resilient strate-
gies and their corresponding capacities. For example, in Fig-
ure 6, we compute the f -resilient capacity of a grid quorum
system for f = 0 and f = 1. Its 0-resilient capacity is 300,
but its 1-resilient capacity is only 100. We then compute the
f -resilient capacities for the “read 2, write 3” quorum system.
For this quorum system, every set of two nodes is a read
quorum, and every set of three nodes is a write quorum. This
quorum system has the same 0-resilient capacity as the grid
but a higher 1-resilient capacity, showing that some quorum
systems are naturally more resilient than others.

grid = QuorumSystem(reads=a*b + c*d)
print(grid.capacity(read_fraction=1, f=0)) # 300
print(grid.capacity(read_fraction=1, f=1)) # 100
read2 = QuorumSystem(reads=choose(2, [a,b,c,d]))
print(read2.capacity(read_fraction=1, f=0)) # 300
print(read2.capacity(read_fraction=1, f=1)) # 200

Figure 6. 0-resilient and 1-resilient strategies.

Quoracle computes f -resilient quorums using a brute-
force backtracking algorithm with pruning. Given a set of
nodes X , Quoracle enumerates every subset of X and checks
whether it is an f -resilient quorum. However, once an f -
resilient quorum is found, all supersets of the quorum are
pruned from consideration.

3.5 Latency and Network Load
Quorum system theory focuses on capacity and fault toler-
ance. We introduce two new practically important metrics.
First, we introduce latency. We associate every node with
a latency that represents the time required to contact the
node. The latency of a quorum q is the time required to form
a quorum of responses after contacting the nodes in q. The
latency of a strategy is the expected latency of the quorums
that it selects. The lower the latency, the better. Note that if a
quorum is f -resilient, we only need to collect responses from
at most all but f of the nodes in order to form a quorum, so
the latency of a quorum can be less than the latency required
to hear back from every node in the quorum.

Second, we introduce network load. When a protocol ex-
ecutes a read or write, it sends messages over the network to
every node in a quorum, so as the sizes of quorums increase,
the number of network messages increases. The network

load of a strategy is the expected size of the quorums it
chooses. The lower the network load, the better.
In isolation, optimizing for latency or network load is

trivial, but balancing capacity, fault tolerance, latency, and
network load simultaneously is very complex. Quoracle al-
lows users to find strategies that are optimal with respect
to capacity, latency, or network load with constraints on
the other metrics. For example, in Figure 7, we specify the
latencies of the nodes in our 2 by 2 grid quorum system and
then find the latency optimal strategy with a capacity no less
than 150 and with a network load of at most 2. The optimal
strategy has a latency of 3 seconds.

a = Node('a', write_cap=100, read_cap=200, latency=4)
b = Node('b', write_cap=100, read_cap=200, latency=4)
c = Node('c', write_cap=50, read_cap=100, latency=1)
d = Node('d', write_cap=50, read_cap=100, latency=1)
grid = QuorumSystem(reads=a*b + c*d)
sigma = grid.strategy(read_fraction = 1,

optimize = 'latency',
capacity_limit = 150,
network_limit = 2)

print(sigma.latency(read_fraction=1)) # 3 seconds

Figure 7. Finding a latency-optimal strategy with capacity
and network load constraints.

Quoracle again uses linear programming to optimize la-
tency and network load. The latency of a quorum system
is computed as follows where latency(r ) and latency(w ) are
the latencies of read quorum r and write quorumw :

fr *
,

∑
r ∈R

pr · latency(r )+
-
+ (1 − fr ) *

,

∑
w ∈W

pw · latency(w )+
-

The network load is computed as

fr *
,

∑
r ∈R

pr · |r |+
-
+ (1 − fr ) *

,

∑
w ∈W

pw · |w |+
-

Note that in reality, the relationships between load, latency,
and network load are complex. For example, as the load
on a node increases, the latencies of the requests sent to it
increase. Moreover, the clients that communicate with the
nodes in a quorum systemmay experience different latencies
based on where they are physically located. We leave these
complexities to future work.

3.6 Quorum System Search
Thus far, we have demonstrated how Quoracle makes it
easy to model, analyze, and optimize a specific hand-chosen
quorum system. Quoracle also implements a heuristic based
search procedure to find good quorum systems. For example,
in Figure 8, we search for a quorum system over the nodes
{a,b,c,d } optimized for latency with a capacity of at least
150 and a network load of at most 2. The search procedure

5
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returns the quorum system with read quorums a + b + c + d
and write quorums abcd , and with the read strategy that
picks c one third of the time and d two thirds of the time.

qs, sigma = search(nodes = [a, b, c, d],
read_fraction = 1,
optimize = 'latency',
capacity_limit = 150,
network_limit = 2)

print(qs) # reads=a+b+c+d, writes=a*b*c*d
print(sigma) # c: 1/3, d: 2/3
print(sigma.latency(read_fraction=1)) # 1 second
print(sigma.capacity(read_fraction=1)) # 150

Figure 8. Searching the space of quorum systems.

Given a list of expressions ē = e1, . . . ,en , let choose(k ; ē )
be the disjunction of the conjunction of every set of k ex-
pressions in ē . For example, choose(2;a,b,c ) = ab + ac + bc ,
and choose(1;a,b,c ) = a + b + c . Given a boolean expres-
sion e representing a set of quorums, we say e is duplicate
free if e can be expressed using logical or, logical and, and
choose with every variable in e appearing exactly once. For
example a + bc is duplicate free. ab + ac = a(b + c ) is dupli-
cate free. ab + ac + bc = choose(2;a,b,c ) is duplicate free.
ab + ace + de + dcb is not duplicate free.

Our search procedure exhaustively searches the space of
all quorum systems that have read quorums expressible by a
duplicate free expression. The search procedure heuristically
explores simpler expressions first. Specifically, it enumerates
expressions in increasing order of their depth when repre-
sented as an abstract syntax tree. Because the search space
is enormous, users can specify a timeout.

4 Case Study
In this section, we present a hypothetical case study that
demonstrates how to use Quoracle in a realistic setting. As-
sume we have five nodes. Nodes a, c , and e can process 2,000
writes per second, while nodes b and d can only process
1,000 writes per second. All nodes process reads twice as fast
as writes. Nodes a and b have a latency of 1 second; nodes c ,
d , and e have latencies of 3, 4, and 5 seconds. We observe a
workload with roughly equal amounts of reads and writes
with a slight skew towards being read heavy. In Figure 9, we
use Quoracle to model the nodes and workload distribution.

Assume we have already deployed a majority quorum sys-
tem with a uniform strategy, which has a capacity of 2,292
commands per second. We want to find a more load optimal
quorum system. We consider three candidates. The first is
the majority quorum system. The second is a staggered grid
quorum system, illustrated in Figure 10a. The third is a quo-
rum system based on paths through a two-dimensional grid

illustrated in Figure 10b. This quorum system has theoreti-
cally optimal capacity [23]. In Figure 11, we construct these
three quorum systems and print their capacities.

a = Node('a', write_cap=2000, read_cap=4000, latency=1)
b = Node('b', write_cap=1000, read_cap=2000, latency=1)
c = Node('c', write_cap=2000, read_cap=4000, latency=3)
d = Node('d', write_cap=1000, read_cap=2000, latency=4)
e = Node('e', write_cap=2000, read_cap=4000, latency=5)
fr = {0.9: 10/470, 0.8: 20/470, 0.7: 100/470,

0.6: 100/470, 0.5: 100/470, 0.4: 60/470,
0.3: 30/470, 0.2: 30/470, 0.1: 20/470}

Figure 9. Nodes and workload distribution.

a b

d e f

(a) Staggered grid quorum system

a b

c

d e

(b) Paths quorum system

Figure 10. The read quorums of the staggered grid and paths
quorum systems. The optimal set of complementary write
quorums is chosen automatically.

maj = QuorumSystem(reads=majority([a, b, c, d, e]))
grid = QuorumSystem(reads=a*b + c*d*e)
paths = QuorumSystem(reads=a*b + a*c*e + d*e + d*c*b)
print(maj.capacity(reads_fraction=fr)) # 3,667
print(grid.capacity(reads_fraction=fr)) # 4,200
print(paths.capacity(reads_fraction=fr)) # 4,125

Figure 11. Quorum systems and their capacities.

The capacities are 3,667, 4,200, and 4,125 commands per
second respectively, making the grid quorum system the
most attractive. However, the grid quorum system is not
necessarily optimal. In Figure 12, we perform a search for
a quorum system optimized for capacity that is tolerant to
one failure. The search takes 7 seconds on a laptop.

qs, sigma = search(nodes=[a, b, c, d, e],
fault_tolerance=1,
read_fraction=fr)

print(qs.capacity(read_fraction=fr)) # 5,005

Figure 12. Searching for a load-optimal quorum system.

The search procedure finds the quorum system with read
quorums (c + bd ) (a + e ) which has a capacity of 5,005 com-
mands per second. This is 1.19× better than the grid quorum
system, and 2.18× better than the majority quorum system
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with a naive uniform strategy. Assume hypothetically that
we deploy this strategy to production. Months later, we in-
troduce a component into our system that bottlenecks our
throughput at 2,000 commands per second. Now, any capac-
ity over 2,000 is wasted, so we search for a quorum system
optimized for latency with a capacity of at least 2,000. We
again consider our three quorum systems in Figure 13.

for qs in [maj, grid, paths]:
print(qs.latency(read_fraction=fr,

optimize='latency',
capacity_limit=2000))

Figure 13. Latencies with a capacity constraint.

The quorum systems have latencies of 3.24, 1.95, and 2.43
seconds respectively, making the grid quorum system the
most attractive. We again perform a search and find the
quorum systemwith read quorumsab+acde+bcde achieves a
latency of 1.48 seconds. This is 1.32× better than the grid and
3.04× better than a naive uniform strategy over a majority
quorum system. The search again completes in 7 seconds.
We hypothetically deploy this quorum system to production.

5 Lessons Learned
5.1 Naive Majority Quorums Underperform
Industry practitioners often use majority quorums because
they are simple and have strong fault tolerance. Our case
study shows that majority quorum systems with uniform
strategies almost always underperform more sophisticated
quorum systems in terms of capacity, latency, and network
load. In Figure 14, we plot a stacked histogram of the through-
put that every node in a majority quorum system obtains
using a naive uniform strategy, with throughput broken
down by quorums. We contrast this in Figure 15 with the
strategy found in Figure 12. The sophisticated quorum sys-
tem assigns more work to machines with higher capacities,
leading to a 2.18× increase in aggregate throughput.

5.2 Optimal Is Not Always Optimal.
There is a large body of research on constructing “optimal”
quorum systems [1, 7, 9, 15, 19, 23, 24]. For example, the
paths quorum system is theoretically optimal, but in our
case study, it has lower capacity and higher latency than
the simpler grid quorum system. There are two reasons for
this mismatch between theoretically and practically optimal.
First, existing quorum system theory does not account for
node heterogeneity and workload skew. Second, these quo-
rum systems are only optimal in the limit, as the number of
nodes tends to infinity.

5.3 The Trade-Off Space Is Complex
Constructing a quorum system of homogeneous nodes that
is optimal in the limit for a fixed workload is difficult but
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Figure 14.A stacked histogram of the throughput of a simple
majority quorum systemwith a naive uniform strategy.Write
quorums are in blue, and read quorums are in red.
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Figure 15.A stacked histogram of the throughput of the quo-
rum system found by our heuristic search (i.e., the quorum
system with read quorums (c + bd ) (a + e )).

doable. When nodes operate at different speeds and work-
loads skew, finding an optimal quorum system that satisfies
constraints on capacity, fault tolerance, latency, and network
load becomes nearly impossible to do by hand. Moreover,
small perturbations in any of these parameters can change
the landscape of the optimal quorum systems. In our case
study, for example, the search procedure finds two differ-
ent quorum systems when optimizing for load and when
optimizing for latency. We believe that using an automated
assistance library like ours is the only realistic way to find
good quorum systems.

6 Conclusion
Majority quorum systems have garnered the most attention
due to their simplicity and well-understood properties. Our
tool, called Quoracle, allows engineers to find more optimal
quorum systems and strategies for a given set of constraints.
With our tool, we not only show that majority quorum sys-
tems are not necessarily the best, but we also illustrate that
some quorums that theoretically boast better performance
are likely to underperform in practical conditions.
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While Quoracle is easy to use, it has a few limitations
that may be addressed by future work. A more sophisti-
cated latency model would help improve the computation
of latency-optimized strategies. We could also incorporate
other practical features such as a cost calculator and the
ability to run Quoracle as a service to let applications adopt
quorum systems on the fly. Additionally, our analysis could
be generalized to cover Byzantine quorum systems, proba-
bilistic quorum systems, and quorum systems in which every
pair write quorums have to intersect [20, 21].
Quoracle and the associated scripts needed to reproduce

this paper’s calculations are available at: https://github.com/
mwhittaker/quoracle.
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