
The VLDB Journal manuscript No.
(will be inserted by the editor)

Interactive Checks for Coordination Avoidance

Michael Whittaker · Joseph M. Hellerstein

Received: date / Accepted: date

Abstract Strongly consistent distributed systems are

easy to reason about but face fundamental limitations

in availability and performance. Weakly consistent sys-

tems can be implemented with very high performance

but place a burden on the application developer to rea-

son about complex interleavings of execution. Invariant

confluence provides a formal framework for understand-

ing when we can get the best of both worlds. An invari-

ant confluent object can be efficiently replicated with

no coordination needed to preserve its invariants. How-

ever, actually determining whether or not an object is

invariant confluent is challenging.

In this paper, we establish conditions under which

a commonly used sufficient condition for invariant con-

fluence is both necessary and sufficient, and we use

this condition to design (a) a general-purpose interac-
tive invariant confluence decision procedure and (b) a

novel sufficient condition that can be checked automat-

ically. We then take a step beyond invariant confluence

and introduce a generalization of invariant confluence,

called segmented invariant confluence, that allows us to

replicate non-invariant confluent objects with a small

amount of coordination.

We implemented these formalisms in a prototype

called Lucy and found that our decision procedures ef-

ficiently handle common real-world workloads includ-

ing foreign keys, rollups, escrow transactions, and more.

We also found that segmented invariant confluent repli-

cation can deliver up to an order of magnitude more

Michael Whittaker
UC Berkeley
E-mail: mjwhittaker@berkeley.edu

Joseph M. Hellerstein
UC Berkeley
E-mail: hellerstein@berkeley.edu

throughput than linearizable replication for low con-

tention workloads and comparable throughput for medium

to high contention workloads.

Keywords consistency, transactions, program analy-

sis, invariants

1 Introduction

When an application designer decides to replicate a

piece of data, they have to make a fundamental choice

between weak and strong consistency. Replicating the

data with strong consistency using a technique like dis-

tributed transactions (e.g., [12, 37]) or state machine

replication (e.g., [43, 29, 34, 40]) makes the application

designer’s life very easy. To the developer, a strongly
consistent system behaves exactly like a single-threaded

system running on a single node, so reasoning about the

behavior of the system is simple [25]. Unfortunately,

strong consistency is at odds with performance. The

CAP theorem and PACELC theorem tell us that strongly

consistent systems suffer from higher latency at best

and unavailability at worst [20, 13, 1]. On the other

hand, weak consistency models like eventual consistency

[48], PRAM consistency [33], causal consistency [2], and

others [35, 36] allow data to be replicated with high

availability and low latency, but they put a tremendous

burden on the application designer to reason about the

complex interleavings of operations that are allowed by

these weak consistency models. In particular, weak con-

sistency models strip an application developer of one

of the earliest and most effective tools that is used

to reason about the execution of programs: applica-

tion invariants [26, 10] such as database integrity con-

straints [22, 23]. Even if every transaction executing in

a weakly consistent system individually maintains an

2 Michael Whittaker, Joseph M. Hellerstein

application invariant, the system as a whole can pro-

duce invariant-violating states.

Is it possible for us to have our strongly consistent

cake and eat it with high availability too? Can we repli-

cate a piece of data with weak consistency but still en-

sure that its invariants are maintained? Yes... some-

times. Bailis et al. introduced the notion of invariant

confluence as a necessary and sufficient condition for

when invariants can be maintained over replicated data

without the need for any coordination [8]. If an object

is invariant confluent with respect to an accompany-

ing invariant, we can replicate the object and invariant

with the performance benefits of weak consistency and

(some of) the correctness benefits of strong consistency.

For example, a replicated bank account balance (repre-

sented as an integer) is invariant confluent with respect

the invariant of a non-negative balance, so long as we

only allow deposits.

Unfortunately, to date, the task of identifying whether

or not an object actually is invariant confluent has re-

mained an exercise in human proof generation. Bailis

et al. manually categorized a set of common objects,

transactions, and invariants (e.g. foreign key constraints

on relations, linear constraints on integers) as invariant

confluent or not. Hand-written proofs of this sort are

unreasonable to expect from programmers. Ideally we

would have a general-purpose program that can auto-

matically determine invariant confluence for us. The

first main thrust of this paper is to make in-

variant confluence checkable: to design a general-

purpose invariant confluence decision procedure, and

implement it in an interactive system.

Unfortunately, designing such a general-purpose de-

cision procedure is impossible because determining the

invariant confluence of an object is undecidable in gen-

eral. Still, we can develop a decision procedure that

works well in the common case. For example, many

prior efforts have developed decision procedures for in-

variant closure, a sufficient (but not necessary) condi-

tion for invariant confluence [32, 31]. The existing ap-

proaches check whether an object is invariant closed. If

it is, then they conclude that it is also invariant conflu-

ent. If it’s not, then the current approaches are unable

to conclude anything about whether or not the object

is invariant confluent.

In this paper, we take a step back and study the

underlying reason why invariant closure is not neces-

sary for invariant confluence. Using this understanding,

we construct a set of modest conditions under which

invariant closure and invariant confluence are in fact

equivalent, allowing us to reduce the problem of de-

termining invariant confluence to that of determining

invariant closure. Then, we use these conditions to de-

sign a general-purpose interactive invariant confluence

decision procedure and a new sufficient condition for

invariant confluence, dubbed merge reducibility. Merge

reducibility covers some cases that are not covered by

invariant closure, and it can be checked automatically.

The second main thrust of this paper is to

partially avoid coordination even in programs

that require it, by generalizing invariant confluence to

a property called segmented invariant confluence. While

invariant confluence characterizes objects that can be

replicated without any coordination, segmented invari-

ant confluence allows us to replicate non-invariant con-

fluent objects with only occasional coordination. The

main idea is to divide the set of invariant-satisfying

states into segments, with a restricted set of transac-

tions allowed in each segment. Within a segment, servers

act without any coordination; they synchronize only

to transition across segment boundaries. This design

highlights the trade-off between application complexity

and coordination-freedom; more complex applications

require more segments which require more coordina-

tion, and vice-versa.

Finally, we present Lucy: an implementation of our

decision procedures and a system for replicating invari-

ant confluent and segmented invariant confluent ob-

jects. Using Lucy, we find that our decision procedures

can efficiently handle a wide range of common work-

loads. For example, in Section 8, we apply Lucy to

foreign key constraints, escrow transactions, an auc-

tion application, and the TPC-C benchmark. Lucy pro-

cesses these workloads in less than half a second, and no

workload requires more than 66 lines of code to specify.

Moreover, we find that segmented invariant confluent

replication can achieve 10× to 100× more throughput

than linearizable replication for low-coordination work-

loads.

In closing, here is a summary of our contributions:

– We propose a novel expression-oriented definition of

invariant confluence that is both formal and simple

(Section 2).

– We develop an understanding of why invariant clo-

sure is not necessary for invariant confluence and

use this understanding to develop conditions under

which it is both necessary and sufficient (Section 3).

– We exploit these conditions to design a general-

purpose interactive decision procedure for invariant

confluence (Section 4).

– We again exploit these conditions to design a novel

non-trivial sufficient condition for invariant conflu-

ence, called merge reducibility (Section 5).

– We present segmented invariant confluence: a gen-

eralization of invariant confluence that uses a small

amount of coordination to maintain invariants for

Interactive Checks for Coordination Avoidance 3

replicated objects that are otherwise not invariant

confluent (Section 6).

2 Invariant Confluence

Informally, a replicated object is invariant confluent

with respect to an invariant if every replica of the ob-

ject is guaranteed to satisfy the invariant despite the

possibility of different replicas being concurrently mod-

ified or merged together [8]. In this section, we make

this informal notion of invariant confluence precise.

We begin by introducing our system model of repli-

cated objects in which a distributed object and accom-

panying invariant is replicated across a set of servers.

Clients send transactions to servers, and a server exe-

cutes a transaction so long as it maintains the invari-

ant. Servers execute transactions without coordination,

but to avoid state divergence, servers periodically gos-

sip with one another and merge their replicas. After we

introduce the system model, we present a formal defi-

nition of invariant confluence.

2.1 System Model

A distributed object O = (S,t) consists of a set S

of states and a binary merge operator t : S × S → S

that merges two states into one. A transaction t :

S → S is a function that maps one state to another.

An invariant I is a subset of S. Notationally, we write

I(s) to denote that s satisfies the invariant (i.e. s ∈ I)

and ¬I(s) to denote that s does not satisfy the invariant

(i.e. s /∈ I).

Example 1 O = (Z,max) is a distributed object con-

sisting of integers merged by the max function; t(x) =

x + 1 is a transaction that adds one to a state; and

{x ∈ Z |x ≥ 0} is the invariant that states x are non-

negative.

Note that we do not assume any properties of t,

like associativity or commutativity. Also note that by

modelling a transaction t as a function S → S, we focus

exclusively on the effects that a transaction has on the

object (i.e. “writes” to the object). Transactions are

also free to read the value of the object, but these reads

are not captured by our model because, as we’ll see,

they do not affect invariant confluence. For example,

we could model any read-only transaction as a function

t where t(s) = s for every s ∈ S.

In our system model, a distributed object O is repli-

cated across a set p1, . . . , pn of n servers. Each server pi
manages a replica si ∈ S of the replicated object. Every

server begins with a start state s0 ∈ S, a fixed set T

of transactions, and an invariant I. Servers repeatedly

perform one of two actions.

First, a client can contact a server pi and request

that it executes a transaction t ∈ T . pi speculatively

executes t, transitioning from state si to state t(si). If

t(si) satisfies the invariant—i.e. I(t(si))—then pi com-

mits the transaction and remains in state t(si). Oth-

erwise, pi aborts the transaction and reverts to state

si.

Second, a server pi can send its state si to another

server pj with state sj causing pj to transition from

state sj to state si t sj . Servers periodically merge

states with one another in order to keep their states

loosely synchronized1. Note that unlike with transac-

tions, servers cannot abort a merge; server pj must

transition from sj to si t sj whether or not si t sj
satisfies the invariant.

Informally, O is invariant confluent with respect

to s0, T , and I, abbreviated (s0, T, I)-confluent, if ev-

ery replica s1, . . . , sn is guaranteed to always satisfy the

invariant I in every possible execution of the system.

2.2 Expression-Based Formalism

To define invariant confluence formally, we represent

a state produced by a system execution as a simple

expression generated by the grammar

e ::= s | t(e) | e1 t e2

where s represents a state in S and t represents a trans-

action in T . As an example, consider the system ex-

ecution in Figure 1a in which a distributed object is

replicated across servers p1, p2, and p3. Server p3 be-

gins with state s0, transitions to state s2 by executing

transaction u, transitions to state s5 by executing trans-

action w, and then transitions to state s7 by merging

with server p1. Similarly, server p1 ends up with state s6

after executing transactions t and v and merging with

server p2. In Figure 1b, we see the abstract syntax tree

of the corresponding expression for state s7.

We say an expression e is (s0, T, I)-reachable if it

corresponds to a valid execution of our system model.

Formally, we define reachable(s0,T,I)(e) to be the small-

est predicate that satisfies the following equations:

– reachable(s0,T,I)(s0).

– For all expressions e and for all transactions t in

the set T of transactions, if reachable(s0,T,I)(e) and

I(t(e)), then reachable(s0,T,I)(t(e)).

1 Notably, if O is a CRDT—i.e. O is a semilattice and every
transaction t ∈ T is inflationary—then this periodic merging
ensures that O is strongly eventually consistent [45].

4 Michael Whittaker, Joseph M. Hellerstein

p1

p2

p3

s0 s1 s3 s6

s0 s2 s4

s0 s2 s5 s7

t v

u

u w

(a) System Execution

t
s7

w
s5

t
s6

u
s2

s0

v
s3

t
s1

s0

t
s4

t
s1

s0

u
s2

s0

(b) Expression

Fig. 1: A system execution and corresponding expres-

sion

– For all expressions e1 and e2, if reachable(s0,T,I)(e1)

and reachable(s0,T,I)(e2), then reachable(s0,T,I)(e1t
e2).

Similarly, we say a state s ∈ S is (s0, T, I)-reachable

if there exists an (s0, T, I)-reachable expression e that

evaluates to s. Returning to Example 1 with start state

s0 = 42, we see that all integers greater than or equal

to 42 (i.e. {x ∈ Z |x ≥ 42}) are (s0, T, I)-reachable, and

all other integers are (s0, T, I)-unreachable.

Finally, we say O is invariant confluent with re-

spect to s0, T , and I, abbreviated (s0, T, I)-confluent,

if all reachable states satisfy the invariant:

{s ∈ S | reachable(s0,T,I)(s)} ⊆ I

2.3 Equivalence to Existing Definition

Our definition of invariant confluence is different than

the original definition given in [8], but the difference is

merely cosmetic. We now prove that the two definitions

are equivalent.

We say an expression e recursively satisfies I,

denoted Irec(e), if e and all of e’s children satisfy I.

That is,

– Irec(s) if I(s),

– Irec(t(e)) if Irec(e) and I(t(e)), and

– Irec(e1 t e2) if Irec(e1), Irec(e2), and I(e1 t e2).

In [8], Bailis et al. define (s0, T, I)-confluence to

mean that (a) the start state s0 satisfies the invari-

ant and (b) all (s0, T, I)-reachable expressions recur-

sively satisfying I are closed under join. That is, O is

(s0, T, I)-confluent if I(s0) and

∀e1, e2 ∈ {e | reachable(s0,T,I)(e)}.
Irec(e1) ∧ Irec(e2) =⇒ I(e1 t e2)

Theorem 1 Consider a state based object O = (S,t),

a start state s0, a set of transactions T , and an invari-

ant I. The following two are equivalent:

1. {s ∈ S | reachable(s0,T,I)(s)} ⊆ I
2. I(s0) and ∀e1, e2 ∈ {e | reachable(s0,T,I)(e)}. Irec(e1)∧

Irec(e2) =⇒ I(e1 t e2)

Proof. First, we show that (1) implies (2). Trivially,

reachable(s0,T,I)(s0), so by (1), I(s0). Let e1 and e2 be

arbitrary (s0, T, I)-reachable expressions. Then e1 t e2

is also reachable, so by (1), I(e1 t e2).

Next, we show that (2) implies (1). We prove by

structural induction that for all e, reachable(s0,T,I)(e) =⇒
Irec(e). From this, (1) is immediate.

– Case s0. I(s0) by (2), so Irec(s0)

– Case t(e). Let t(e) be (s0, T, I)-reachable. Then,

reachable(s0,T,I)(e) and I(t(e)). By the inductive hy-

pothesis, Irec(e), so by the definition of Irec(·), Irec(t(e)).

– Case e1 t e2. Let e1 t e2 be (s0, T, I)-reachable.

Then, reachable(s0,T,I)(e1) and reachable(s0,T,I)(e2).

By the inductive hypothesis, Irec(e1) and Irec(e2).

By (2), I(e1 t e2). Thus, by the definition of Irec(·),
Irec(e1 t e2).

3 Invariant Closure

Our ultimate goal is to write a program that can au-

tomatically decide whether a given distributed object

O is (s0, T, I)-confluent. Such a program has to auto-

matically prove or disprove that every reachable state

satisfies the invariant. However, automatically reason-

ing about the possibly infinite set of reachable states is

challenging, especially because transactions and merge

functions can be complex and can be interleaved arbi-

trarily in an execution. Due to this complexity, existing

systems that aim to automatically decide invariant con-

fluence instead focus on deciding a sufficient condition

for invariant confluence—dubbed invariant closure—

that is simpler to reason about [32, 31]. In this section,

we define invariant closure and study why the condition

is sufficient but not necessary. Armed with this under-

standing, we present conditions under which it is both

sufficient and necessary.

We say an object O = (S,t) is invariant closed

with respect to an invariant I, abbreviated I-closed, if

invariant satisfying states are closed under merge. That

is, for every state s1, s2 ∈ S, if I(s1) and I(s2), then

I(s1 t s2).

Theorem 2 Given an object O = (S,t), a start state

s0 ∈ S, a set of transactions T , and an invariant I, if

I(s0) and if O is I-closed, then O is (s0, T, I)-confluent.

Proof. Theorem 2 states that invariant closure is suffi-

cient for invariant confluence. To prove this informally,

Interactive Checks for Coordination Avoidance 5

x

y

s0

s1

s2

s3

(a) Invariant

x

y

s0

s1

s2

s3

(b) Reachable points

Fig. 2: An illustration of Example 2

recall that our system model ensures that transaction

execution preserves the invariant, so if merging states

also preserves the invariant and if our start state satis-

fies the invariant, then inductively it is impossible for

us to reach a state that doesn’t satisfy the invariant.

More formally, consider an arbitrary state s that

is reachable via expression e. We prove by structural

induction that for every expression e, if e is (s0, T, I)-

reachable then I(e).

– Case s0. s0 is reachable and satisfies the invariant

by assumption.

– Case t(e). If t(e) is reachable, then it satisfies the

invariant by definition.

– Case e1 t e2. Let e1 t e2 be (s0, T, I)-reachable.

Then, reachable(s0,T,I)(e1) and reachable(s0,T,I)(e2).

By the inductive hypothesis, I(e1) and I(e2). By

invariant closure, I(e1 t e2).

Theorem 2 is good news because checking if an ob-

ject is invariant closed is more straightforward than

checking if it is invariant confluent. Existing systems

typically use an SMT solver like Z3 to check if an ob-

ject is invariant closed [17, 9, 21]. If it is, then by Theo-

rem 2, it is invariant confluent. Unfortunately, invariant

closure is not necessary for invariant confluence, so if

an object is not invariant closed, these systems cannot

conclude that the object is not invariant confluent. The

reason why invariant closure is not necessary for invari-

ant confluence is best explained through an example.

Example 2 Let O = (Z×Z,t) consist of pairs (x, y) of

integers where

(x1, y1) t (x2, y2) = (max(x1, x2),max(y1, y2))

Our start state s0 ∈ Z×Z is the point (0, 0). Our set T

of transactions consists of two transactions: tx+1((x, y)) =

(x+ 1, y) which increments x and ty−1((x, y)) = (x, y−
1) which decrements y. Our invariant I = {(x, y) ∈

Z × Z |xy ≤ 0} consists of all points (x, y) where the

product of x and y is non-positive.

The invariant and the set of reachable states are

illustrated in Figure 2 in which we draw each state (x, y)

as a point in Z2. The invariant consists of the second

and fourth quadrant, while the reachable states consist

only of the fourth quadrant. From this, it is immediate

that the reachable states are a subset of the invariant, so

O is invariant confluent. However, letting s1 = (−1, 1)

and s2 = (1,−1), we see that O is not invariant closed.

I(s1) and I(s2), but letting s3 = s1ts2 = (1, 1), we see

¬I(s3).

In Example 2, s1 and s2 witness the fact that O

is not invariant closed, but s1 is not reachable. This is

not particular to Example 2. In fact, it is fundamen-

tally the reason why invariant closure is not equivalent

to invariant confluence. Invariant confluence is, at its

core, a property of reachable states, but invariant clo-

sure is completely ignorant of reachability. As a result,

invariant-satisfying yet unreachable states like s1 are

the key hurdle preventing invariant closure from being

equivalent to invariant confluence. This is formalized by

Theorem 3.

Theorem 3 Consider an object O = (S,t), a start

state s0 ∈ S, a set of transactions T , and an invariant

I. If the invariant is a subset of the reachable states

(i.e. I ⊆ {s ∈ S | reachable(s0,T,I)(s)}), then

(I(s0) and O is I-closed) ⇐⇒ O is (s0, T, I)-confluent

Proof. The forward direction of Theorem 3 follows im-

mediately from Theorem 2. The backward direction

holds because any two invariant satisfying states s1 and

s2 must be reachable (by assumption), so their join

s1 t s2 is also reachable. And because O is (s0, T, I)-

confluent, all reachable points, including s1ts2, satisfy

the invariant. Moreover s0 is reachable, so I(s0) because

O is (s0, T, I)-confluent.

4 Interactive Decision Procedure

Theorem 3 tells us that if all invariant satisfying points

are reachable, then invariant closure and invariant con-

fluence are equivalent. In this section, we present the in-

teractive invariant confluence decision procedure shown

in Algorithm 1, that takes advantage of this result.

4.1 The Decision Procedure

A user provides Algorithm 1 with an object O = (S,t),

a start state s0, a set of transactions T , and an invariant

6 Michael Whittaker, Joseph M. Hellerstein

Algorithm 1 Interactive invariant confluence decision

procedure

// Return if O is (s0, T, I)-confluent.
function IsInvConfluent(O, s0, T , I)

return I(s0) and Helper(O, s0, T , I, {s0}, ∅)

// R is a set of (s0, T, I)-reachable states.
// NR is a set of (s0, T, I)-unreachable states.
// I(s0) is a precondition.
function Helper(O, s0, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I −NR)
if closed then

return true
Augment R,NR with random search and user input
if s1, s2 ∈ R then

return false
return Helper(O, s0, T , I, R, NR)

I. The user then interacts with Algorithm 1 to itera-

tively eliminate unreachable states from the invariant.

Meanwhile, the algorithm leverages an invariant closure

decision procedure to either (a) conclude that O is or is

not (s0, T, I)-confluent or (b) provide counterexamples

to the user to help them eliminate unreachable states.

After all unreachable states have been eliminated from

the invariant, Theorem 3 allows us to reduce the prob-

lem of invariant confluence directly to the problem of in-

variant closure, and the algorithm terminates. We now

describe Algorithm 1 in detail. An example of how to

use Algorithm 1 on Example 2 is given in Figure 3.

IsInvConfluent assumes access to an invariant

closure decision procedure IsIclosed(O, I). The deci-

sion procedure IsIclosed(O, I) returns a triple (closed,

s1, s2). closed is a boolean indicating whether O is I-

closed. If closed is true, then s1 and s2 are null. If closed

is false, then s1 and s2 are a counterexample witness-

ing the fact that O is not I-closed. That is, I(s1) and

I(s2), but ¬I(s1ts2) (e.g., s1 and s2 from Example 2).

As we mentioned earlier, we can (and do) implement

the invariant closure decision procedure using an SMT

solver like Z3 [17].

IsInvConfluent first checks that s0 satisfies the

invariant. s0 is reachable, so if it does not satisfy the

invariant, then O is not (s0, T, I)-confluent and IsIn-

vConfluent returns false. Otherwise, IsInvConflu-

ent calls a helper function Helper that—in addition

to O, s0, T , and I—takes as arguments a set R of

(s0, T, I)-reachable states and a set NR of (s0, T, I)-

unreachable states. Like IsInvConfluent, the func-

tion Helper(O, s0, T, I, R,NR) returns whether O is

(s0, T, I)-confluent (assuming R and NR are correct).

As Algorithm 1 executes, NR is iteratively increased,

which removes unreachable states from I until I is a

subset of {s ∈ S | reachable(s0,T,I)(s)}.

First, Helper checks to see if O is (I−NR)-closed.

If IsIclosed determines that O is (I − NR)-closed,

then by Theorem 2, O is (s0, T, I −NR)-confluent, so

{s ∈ S | reachable(s0,T,I−NR)(s)} ⊆ I −NR ⊆ I

In this case, O is (s0, T, I)-confluent because the set

of (s0, T, I)-reachable states is a subset of (s0, T, I −
NR)-reachable states which is in turn a subset of I.

We prove that now.

Proof. We prove, by structural induction, that every

(s0, T, I)-reachable expression e is also (s0, T, I −NR)-

reachable.

– Case s0. s0 is (s0, T, I − NR)-reachable by defini-

tion.

– Case t(e). e is (s0, T, I)-reachable, so by the induc-

tive hypothesis, it is also (s0, T, I −NR)-reachable.

Moreover, t(e) ∈ I and t(e) /∈ NR (by assumption),

so t(e) ∈ I − NR. Thus, t(e) is (s0, T, I − NR)-

reachable.

– Case e1 t e2. By the inductive hypothesis, e1 and

e2 are both (s0, T, I −NR)-reachable, so e1 t e2 is

also (s0, T, I −NR)-reachable.

If IsIclosed determines that O is not (I − NR)-

closed, then we have a counterexample s1, s2. That is,

s1, s2 ∈ I − NR, but s1 t s2 /∈ I − NR. We want to

determine whether s1 and s2 are (s0, T, I)-reachable or

unreachable. We can do so in two ways. First, we can

randomly generate a set of reachable states and add

them to R. If s1 or s2 is in R, then we know they are

reachable. Second, we can prompt the user to tell us

directly whether or not the states are reachable or un-

reachable.

In addition to labelling s1 and s2 as reachable or

unreachable, the user can also refine I by augmenting

R and NR arbitrarily (see Figure 3 for an example).

In this step, we also make sure that s0 /∈ NR since we

know that s0 is reachable.

After s1 and s2 have been labelled as (s0, T, I)-

reachable or not, we continue. If both s1 and s2 are

(s0, T, I)-reachable, then so is s1 t s2, but ¬I(s1 t s2)

(because s1 t s2 /∈ I − NR). Thus, O is not (s0, T, I)-

confluent, so Helper returns false. Otherwise, one of

s1 and s2 is (s0, T, I)-unreachable, so we recurse.

Helper recurses only when one of s1 or s2 is un-

reachable, so NR grows after every recursive invocation

of Helper. Similarly, R continues to grow as Helper

randomly explores the set of reachable states. As the

user sees more and more examples of unreachable and

reachable states, it often becomes easier and easier for

Interactive Checks for Coordination Avoidance 7

R NR I −NR

(a) IsInvConfluent determines I(s0) and then
calls Helper with R = {s0}, NR = ∅, and I =
{(x, y) |xy ≤ 0}.

R NR I −NR

(b) Helper determines that O is not (I−NR)-closed with counterexample
s1 = (−1, 1) and s2 = (1,−1). Helper randomly generates some (s0, T, I)-
reachable points and adds them to R. Luckily for us, s2 ∈ R, so Helper

knows that it is (s0, T, I)-reachable. Helper is not sure about s1, so it asks
the user. After some thought, the user tells Helper that s1 is (s0, T, I)-
unreachable, so Helper adds s1 to NR and then recurses.

R NR I −NR

(c) Helper determines that O is not (I − NR)-
closed with counterexample s1 = (−1, 2) and
s2 = (3,−3). Helper randomly generates some
(s0, T, I)-reachable points and adds them to R.
s1, s2 /∈ R,NR, so Helper ask the user to label
them. The user puts s1 in NR and s2 in R. Then,
Helper recurses.

R NR I −NR

(d) Helper determines that O is not (I−NR)-closed with counterexample
s1 = (−2, 1) and s2 = (1,−1). Helper randomly generates some (s0, T, I)-
reachable points and adds them to R. s2 ∈ R but s1 /∈ R,NR, so Helper

asks the user to label s1. The user notices a pattern in R and NR and after
some thought, concludes that every point with negative x-coordinate is
(s0, T, I)-unreachable. They update NR to −Z×Z. Then, Helper recurses.
Helper determines that O is (I −NR)-closed and returns true!

Fig. 3: An example of a user interacting with Algorithm 1 on Example 2. Each step of the visualization shows

reachable states R (left), non-reachable states NR (middle), and the refined invariant I − NR (right) as the

algorithm executes

them to recognize patterns that define which states are

reachable and which are not. As a result, it becomes

easier for a user to augment NR and eliminate a large

number of unreachable states from the invariant. Once

NR has been sufficiently augmented to the point that

I −NR is a subset of the reachable states, Theorem 3

guarantees that the algorithm will terminate after one

more call to IsIclosed.

4.2 Limitations

Our interactive invariant confluence decision procedure

has two limitations. First, Algorithm 1 requires an in-

variant closure decision procedure, but determining in-

variant closure is undecidable in general. For example,

let Op = (S,t) where S is the set of all programs and

s1 t s2 = p for some fixed program p. Letting I be

the set of all programs that terminate, determining if

Op is I-closed is tantamount to determining if p ter-

minates. In practice, we can implement an invariant

closure decision procedure using an SMT solver like

Z3 that works well on simple objects, invariants, and

merge operators (e.g., integers, tuples, infinite sets, bit

vectors, linear constraints, basic arithmetic, tuple pro-

jection, basic set operations, bit arithmetic). But, SMT

solvers are mostly unable to analyze more complex con-

structs (e.g., finite lists [28], graphs, recursive algebraic

data types, nonlinear constraints, merge operators that

contain loops or recursion).

Second, Algorithm 1 relies on a user to identify un-

reachable states. As we saw in Figure 3, the set of
unreachable states can sometimes be clear, especially

if there’s a noticeable pattern in the set of reachable

states. However, if the set of transactions is large or

complex or if the merge operator is complex, then rea-

soning about unreachable states can be difficult. Unlike

with reachable states—where verifying that a state is

reachable only requires thinking of a single way to reach

the state—verifying that a state is unreachable requires

a programmer to reason about a large number of system

executions and conclude that none of them can lead to

the state. In the future, we plan on exploring ways to

help a user reason about unreachable states and ways

to discover sets of unreachable states automatically.

4.3 Tolerating User Error

Algorithm 1 is an interactive decision procedure. It re-

quires that a user classify states as reachable or un-

reachable. To err is human, so what happens when a

8 Michael Whittaker, Joseph M. Hellerstein

user incorrectly classifies a state? There are two possi-

ble errors that can be made, and Algorithm 1 can be

made robust to both.

A user can label an unreachable state as reach-

able. In this case, Helper might erroneously find s1

and s2 ∈ R and return false, concluding that O is not

(s0, T, I)-confluent even when it is. This is inconvenient,

but not catastrophic. We can modify Algorithm 1 so

that Helper requires that whenever a user labels a

state s as (s0, T, I)-reachable, they must also provide

an (s0, T, I)-reachable expression e that evaluates to

s. Here, e acts a proof that certifies that s is indeed

reachable. This increases the burden on the user but

completely eliminates this type of user error.

A user can label a reachable state as unreach-

able. In this case, IsIclosed(O, I−NR) might return

true, even though O is not (s0, T, I)-confluent. Thus,

a user might falsely believe their distributed object to

be (s0, T, I)-confluent even though it isn’t, and eventu-

ally one replica of their distributed object might enter

a state that violates the invariant. We can mitigate this

in two ways. First, we can aggressively expand R auto-

matically. If a user ever labels a state s as unreachable,

but s ∈ R, we can notify the user of their mistake. Sec-

ond, Helper returns true when O is (I − NR)-closed

for some NR, so O is (s0, T, I − NR)-confluent (even

though it might not be (s0, T, I)-confluent). Thus, when

a user replicates their distributed object across a set of

servers, they can deploy with the invariant I −NR in-

stead of I. If NR is correct and only contains unreach-

able states, then deploying with I−NR is equivalent to

deploying with I. If NR is incorrect and contains some

(s0, T, I)-reachable states, then some of these states are

artificially made unreachable, but the system is still

guaranteed to never produce a state that violates I.

5 Merge Reduction

In Section 3, we discussed how invariant confluence is

fundamentally a property of reachability and that in-

variant closure is sufficient but not necessary for in-

variant confluence because it fails to incorporate any

notion of reachability. Using this intuition, we estab-

lished Theorem 3 and then exploited the theorem in

Algorithm 1. In this section, we again take advantage

of this intuition to develop a new sufficient condition for

invariant confluence that can be checked without user

interaction and that covers some cases not covered by

invariant closure.

An expression e = t1(t2(. . . (tn(s)) . . .)) is merge-

free if does not contain any merges (i.e. it is generated

by the grammar e ::= s | t(e)). An object O = (S,t) is

merge-reducible with respect to a start state s0 ∈ S,

a set of transactions T , and an invariant I, abbreviated

(s0, T, I)-merge reducible, if for every pair e1 and

e2 of merge-free (s0, T, I)-reachable expressions, there

exists some merge-free (s0, T, I)-reachable expression e3

that evaluates to the same state as e1te2. Intuitively, if

O is merge-reducible, we can replace e1 t e2 (which has

one merge) with e3 (which has no merges) to obtain an

equivalent expression with fewer merges.

Example 3 Consider the distributed objectO = (Z,max)

consisting of integers merged by the max function. Our

start state s0 = 0 and our invariant I = {x ∈ Z |x ≥ 0}.
Our set T of transactions is the infinite set T = {ty | y ∈
Z} where ty(x) = x+ y is a transaction that adds y to

the state. For example, t2 is a transaction that adds 2

to the state, and t−3 is a transaction which subtracts

3 from the state. O is (s0, T, I)-merge reducible. Con-

sider two merge-free (s0, T, I)-reachable expressions e1

and e2 that evaluate to states x1 and x2. Without loss

of generality, assume x1 ≥ x2. Then, we can replace

e1 t e2 (which evaluates to x1) with e1. We can also

replace it with tx1
(0).

Example 4 Consider the distributed object O = ({X ⊆
Z},t) in which each state is a set of integers and where

X1 t X2 = {y} where y =
∑

x∈X1
x +

∑
x∈X2

x. Our

start state state s0 = ∅ and our invariant I = {X | ∀x ∈
X. x is even}. Our set T of transactions is the set T =

{t0, t2, t4} where ti(X) = X ∪ {i} is a transaction that

adds i to the state. For example, t2({0}) = {0, 2}. O is

not (s0, T, I)-merge reducible. Consider the two merge-

free (s0, T, I)-reachable expressions e1 = t2(∅) and e2 =

t4(∅). e1 t e2 evaluates to {6}, but there does not exist

a merge-free expression that evaluates to {6}.

Theorem 4 Given an object O = (S,t), a start state

s0 ∈ S, a set of transactions T , and an invariant I, if

I(s0) and if O is (s0, T, I)-merge reducible, then O is

(s0, T, I)-confluent.

Proof. Intuitively, the proof of Theorem 4 is a straight-

forward induction. We begin with an (s0, T, I)-reachable

expression e and repeatedly replace any subexpression

that merges two merge-free subexpressions with an equiv-

alent merge-free reachable subexpression (which we can

do because O is merge-reducible). We repeat this pro-

cess until e has been completely replaced with an equiv-

alent merge-free reachable expression e′. Because I(s0)

and because our system model only executes transac-

tions that preserve the invariant, e′ (and hence e) is

guaranteed to satisfy the invariant. Thus, all reachable

states satisfy the invariant, so O is invariant confluent.

An illustration of this idea is given in Figure 4.

More formally, we prove by structural induction on

e, that for all (s0, T, I)-reachable expressions e, there

Interactive Checks for Coordination Avoidance 9

t
s7

t
s3

t
s6

t
s1

u
s2

v
s4

w
s5

s0 s0 s0 s0

t
s7

p
s3

t
s6

v
s4

w
s5

s0

s0 s0

t
s7

p
s3

q
s6

s0 s0

r
s7

s0

Fig. 4: An illustration of the proof of Theorem 4. We begin with a reachable expression and convert it into a

merge-free reachable expression by repeatedly replacing the merge of two merge-free reachable subexpressions

with an equivalent merge-free reachable expression. In this example, we first replace t(s0) t u(s0) with p(s0). We

then replace v(s0) t w(s0) with q(s0). Finally, we replace p(s0) t q(s0) with r(s0)

exists a merge-free (s0, T, I)-reachable expression e′ such

that eval(e) = eval(e′).

– Case 1: e = s0. Trivially, e′ = s0.

– Case 2: e = t(e1). e1 is (s0, T, I)-reachable, so by

the inductive hypothesis, there exists a merge-free

(s0, T, I)-reachable expression e′1 such that eval(e1) =

eval(e′1). t(e1) is (s0, T, I)-reachable, so I(t(e1)). Be-

cause eval(e1) = eval(e′1), we know also that I(t(e′1)).

Thus, t(e′1) is (s0, T, I)-reachable (and join free), so

we can let e′ = t(e′1).

– Case 3: e = e1te2. e1 and e2 are (s0, T, I)-reachable,

so by the inductive hypothesis, there exists equiv-

alent merge-free (s0, T, I)-reachable expressions e′1
and e′2. O is (s0, T, I)-merge reducible, so there ex-

ists an equivalent merge-free (s0, T, I)-reachable ex-

pression e′.

Consider an arbitrary (s0, T, I)-reachable expression

e and it’s equivalent merge-free (s0, T, I)-reachable coun-

terpart e′. e′ is either s0 or t(e′′). In either case, it sat-
isfies the invariant, so O is (s0, T, I)-confluent.

Note that while merge-reducibility is a sufficient con-

dition for invariant confluence, it is not necessary. The

object in Example 4 is invariant confluent but not merge-

reducible.

Merge-reducibility is a sufficient condition for in-

variant confluence, but unlike with invariant closure,

it is not straightforward to automatically determine if

an object is merge-reducible. In Theorem 5, we out-

line a sufficient condition for merge-reducibility that is

straightforward to determine automatically.

Theorem 5 Given an object O = (S,t), a start state

s0 ∈ S, a set of transactions T , and an invariant I, if

the following criteria are met, then O is (s0, T, I)-merge

reducible (and therefore (s0, T, I)-confluent).

1. O is a join-semilattice. That is, t is associative

((xty)tz = xt(ytz)), commutative (xty = ytx),

and idempotent (x t x = x).

2. For every t ∈ T , there exists some st ∈ S such that

for all s ∈ S, t(s) = stst. That is, every transaction

t is of the form t(s) = s t st for some constant st.

3. For every pair of transactions t1, t2 ∈ T and for all

states s ∈ S, if I(s), I(t1(s)), and I(t2(s)), then

I(t1(s) t t2(s)).

4. I(s0).

Proof. Let

e1 = tn(tn−1(. . . (t1(s0)) . . .))

and

e2 = um(um−1(. . . (u1(s0)) . . .))

be two arbitrary merge-free (s0, T, I)-reachable expres-

sions. For ease of notation, let

ti = ti(. . . (t1(s0)) . . .) and uj = uj(. . . (u1(s0)) . . .)

We want to show that there exists some merge-free

(s0, T, I)-reachable expression that is equivalent to e1t
e2. To do so, we prove by strong induction on k ∈ N
that if k = i + j where 0 ≤ i ≤ n and 0 ≤ j ≤ m,

ti(uj(s0)) is (s0, T, I)-reachable and eval(ti(uj(s0))) =

eval(ti(s0) t uj(s0)).

– Case k = 0. i = j = 0, so t0(u0(s0)) = s0 which is

trivially (s0, T, I)-reachable and equivalent to t0(s0)t
u0(s0) = s0 t s0 which evaluates to s0 (because t is

idempotent).

– Case k = 1. Without loss of generality, assume

i = 1 and j = 0. Then, t1(u0(s0)) = t1(s0) which

is (s0, T, I)-reachable because it is a subexpression

of tn which is (s0, T, I)-reachable. Moreover, it is

equivalent to t1(s0) t u0(s0) = t1(s0) t s0 which

evaluates to st1 ts0ts0 = st1 ts0 = t1(s0) for some

st1 ∈ S.

– Case k ≥ 2. If i = 0, then j = k and uk(s0) is

(s0, T, I)-reachable because it is a subexpression of

um(s0). Also, it is equivalent to t0(s0)tuk(s0) which

10 Michael Whittaker, Joseph M. Hellerstein

Invariant Confluent

Invariant Closed

Criteria (1) – (4)

Merge Reducible

Fig. 5: The relationship between invariant closure,

merge reducibility, criteria (1) – (4) from Theorem 5,

and invariant confluence

evaluates to uk(s0). The symmetric result holds if

j = 0.

Otherwise, i, j > 1. Let

ei−1,j−1 = ti−1(uj−1(s0))

ei,j−1 = ti(uj−1(s0))

ei−1,j = ti−1(uj(s0))

By the inductive hypothesis, ei−1,j−1, ei,j−1, and

ei−1,j are all (s0, T, I)-reachable. By condition 3 (with

s = eval(ei−1,j−1), t1 = ti, and t2 = uj), I(ei,j−1 t
ei−1,j). ei,j−1 t ei−1,j = ti(ei−1,j) = uj(ei,j−1) =

ti(uj(s0)), so I(ti(uj(s0))). Therefore, ti(uj(s0)) is

(s0, T, I)-reachable.

An illustration of this proof is given in Figure 6.

We arrange the expressions e1 and e2 as the left and

top edges of a square grid. Each point in the grid rep-

resents a state (with s0 in the top left corner), and

each edge represents the application of a transaction.

A state is circled if we know it satisfies the invariant.

Condition (1) and (2) tell us that the order in which we

apply transactions is immaterial. Thus, if we begin at

the top left of the square and walk to any other point in

the square, applying transactions along the way, it does

not matter which path we take. They are all equivalent.

Condition (4) tells us that the top-left corner satisfies

the invariant. We induct to repeatedly apply condition

(3) to “fill in” the square, one block at a time. In iter-

ation k, we discover that all points with a Manhattan

distance of k from the top left corner satisfy the in-

variant. Ultimately, we conclude that the bottom right

corner (i.e., e1 t e2) satisfies the invariant and is equiv-

alent to tn(um(s0)).

Theorem 2 states that invariant closure is a suffi-

cient condition for invariant confluence, and Theorem 5

states that criteria (1) – (4) are sufficient conditions for

invariant confluence. How do these sufficient conditions

relate to one another? Clearly, not all invariant closed

objects are semilattices, so invariant closure does not

imply criteria (1) – (4). Conversely, there are some ob-

jects that satisfy criteria (1) – (4) that are not invariant

closed. Here’s one example.

Example 5 Let O = (P(N),∪) where P(N) is the power

set of the natural numbers. Our start state s0 = {0}
is the set of 0. Let tY (X) = X ∪ Y be the trans-

action that unions Y with its argument X. Our set

T = {tY |Y ⊆ N} of transactions consists of all possi-

ble tY . Our invariant I consists of all non-empty sets

X that contain only even or only odd elements. That

is, I = {X ⊆ 2N |X 6= ∅} ∪ {X ⊆ 2N + 1 |X 6= ∅}.
Criteria (1), (2), (3) and (4) are all satisfied. How-

ever, O is not I-closed. Let s1 = {0} and s2 = {1}.
Then, I(s1) and I(s2), but letting s3 = s1∪s2 = {0, 1},
¬I(s3).

Here’s why criterion (3) is satisfied. If s is an ar-

bitrary state that satisfies I, then it is non-empty and

contains, without loss of generality, only even integers.

If t1 and t2 are arbitrary transactions such that I(t1(s))

and I(t2(s)), then t1(s) and t2(s) are also non-empty

and contain only even integers. Thus, t1(s) ∪ t2(s) is

clearly non-empty and contains only even integers, so

I(t1(s) t t2(s)).

Invariant closure is not necessary for invariant con-

fluence because it fails to incorporate any notion of

reachability. Criteria (1) – (4) are also unnecessary,

but they can be used to prove that some non-invariant

closed objects are invariant confluent because the cri-

teria do incorporate notions of reachability. In particu-

lar, criterion (3) is a slight variant of invariant closure;

it also states that invariant satisfying states should be

closed under merge. The fundamental difference is that

criterion (3) restricts its attention to the merge of two

states that are reachable from a common ancestor state.

In Example 5, we saw this fundamental difference

rear its head. O is not I-closed because the union of an

odd-only set with an even-only set is a set with both odd

and even integers. However, if we begin in an invariant

satisfying state, we cannot reach both an odd-only and

even-only set. Criterion (3) is able to recognize this fact

and conclude that O is invariant confluent despite it not

being invariant closed.

The relationship between invariant confluence, in-

variant closure, merge-reducibility, and criteria (1)-(4)

is illustrated in Figure 5.

6 Segmented Invariant Confluence

If a distributed object is invariant confluent, then the

object can be replicated without the need for any form

of coordination to maintain the object’s invariant. But

Interactive Checks for Coordination Avoidance 11

u1 u2 u3

t1

t2

t3

(a) k = 0

u1 u2 u3

t1

t2

t3

(b) k = 1

u1 u2 u3

t1

t2

t3

u1

t1

(c) k = 2

u1 u2 u3

t1

t2

t3

u1

t1

u1

t2

u2

t1

(d) k = 3
u1 u2 u3

t1

t2

t3

u1

t1

u1

t2

u2

t1

u1

t3

u2

t2

u3

t1

(e) k = 4

u1 u2 u3

t1

t2

t3

u1

t1

u1

t2

u2

t1

u1

t3

u2

t2

u3

t1

u2

t3

u3

t2

(f) k = 5

u1 u2 u3

t1

t2

t3

u1

t1

u1

t2

u2

t1

u1

t3

u2

t2

u3

t1

u2

t3

u3

t2

u3

t3

(g) k = 6

Fig. 6: Illustration of the proof of Theorem 5 for n = m = 3

what if the object is not invariant confluent? In this

section, we present a generalization of invariant con-

fluence called segmented invariant confluence that

can be used to maintain the invariants of non-invariant

confluent objects, requiring only a small amount of co-

ordination. In Section 8, we see that replicating a non-

invariant confluent object with segmented invariant con-

fluence can achieve between 10× and 100×more through-

put than linearizable replication for certain workloads.

The main idea behind segmented invariant conflu-

ence is to segment the state space into a number of

segments and restrict the set of allowable transactions

within each segment in such a way that the object is

invariant confluent within each segment (even though it

may not be globally invariant confluent). Then, servers

can run coordination-free within a segment and need

only coordinate when transitioning from one segment

to another. We now formalize segmented invariant con-

fluence, describe the system model we use to replicate

segmented invariant confluent objects, and introduce a

segmented invariant confluence decision procedure.

6.1 Formalism

Consider a distributed object O = (S,t), a start state

s0 ∈ S, a set of transitions T , and an invariant I. A

segmentation Σ = (I1, T1), . . . , (In, Tn) is a sequence

(not a set) of n segments (Ii, Ti) where every Ti is a

subset of T and every Ii ⊆ S is an invariant. O is seg-

mented invariant confluent with respect to s0, T , I,

and Σ, abbreviated (s0, T, I,Σ)-confluent, if the fol-

lowing conditions hold:

– The start state satisfies the invariant (i.e. I(s0)).

– I is covered by the invariants in Σ (i.e. I = ∪ni=1Ii).

Note that invariants in Σ do not have to be disjoint.

That is, they do not have to partition I; they just

have to cover I.

– O is invariant confluent within each segment. That

is, for every (Ii, Ti) ∈ Σ and for every state s ∈ Ii,
O is (s, Ti, Ii)-confluent.

Example 6 Consider again the object O = (Z × Z,t),

the set of transactions T = {tx+1, ty−1}, and the in-

variant I = {(x, y) |xy ≤ 0} from Example 2, but now

let the start state s0 be (−42, 42). O is not (s0, T, I)-

confluent because the points (0, 42) and (42, 0) are reach-

able, and merging these points yields (42, 42) which vio-

lates the invariant. However, O is (s0, T, I,Σ)-confluent

for Σ = (I1, T1), (I2, T2), (I3, T3), (I4, T4) where

I1 = {(x, y) |x < 0, y > 0} T1 = {tx+1, ty−1}
I2 = {(x, y) |x ≥ 0, y ≤ 0} T2 = {tx+1, ty−1}
I3 = {(x, y) |x = 0} T3 = {ty−1}
I4 = {(x, y) | y = 0} T4 = {tx+1}

Σ is illustrated in Figure 7. Clearly, s0 satisfies the in-

variant, and I1, I2, I3, I4 cover I. Moreover, for every

(Ii, Ti) ∈ Σ, we see that O is Ii-closed, soO is (s, Ti, II)-

confluent for every s ∈ Ii. Thus, O is (s0, T, I,Σ)-

confluent.

12 Michael Whittaker, Joseph M. Hellerstein

(a) (I1, T1). (b) (I2, T2).

(c) (I3, T3). (d) (I4, T4).

Fig. 7: An illustration of Example 6

6.2 System Model

Now, we describe the system model used to replicate a

segmented invariant confluent object without any coor-

dination within a segment and with only a small amount

of coordination when transitioning between segments.

As before, we replicate an objectO across a set p1, . . . , pn
of n servers each of which manages a replica si ∈ S of

the object. Every server begins with s0, T , I, and Σ.

Moreover, at any given point in time, a server desig-

nates one of the segments in Σ as its active segment.

Initially, every server selects its active segment to be

the first segment (Ii, Ti) ∈ Σ such that Ii(s0). We’ll see

momentarily the significance of the active segment.

As before, servers repeatedly perform one of two

actions: execute a transaction or merge states with an-

other server. Merging states in the segmented invariant

confluence system model is identical to merging states

in the invariant confluence system model. A server pi
sends its state si to another server pj which must merge

si into its state sj . Transaction execution in the new

system model, on the other hand, is a bit more in-

volved. Consider a server pi with active segment (Ii, Ti).

A client can request that pi execute a transaction t ∈ T .

We consider what happens when t ∈ Ti and t /∈ Ti sep-

arately.

If t /∈ Ti, then pi initiates a round of global coordi-

nation to execute t. During global coordination, every

server temporarily stops processing transactions and

transitions to state s = s1 t . . . t sn, the join of every

server’s state. Then, every server speculatively executes

t transitioning to state t(s). If t(s) violates the invariant

(i.e. ¬I(t(s))), then every server aborts t and reverts to

state s. Then, pi replies to the client. If t(s) satisfies the

invariant (i.e. I(t(s))), then every server commits t and

Algorithm 2 Transaction execution in the segmented

invariant confluence system model

if t /∈ Ti then

Execute t with global coordination
else

if Ii(t(si)) then

Commit t
else if ¬I(t(si)) then

Abort t

else
Execute t with global coordination

remains in state t(s). Every server then chooses the first

segment (Ii, Ti) ∈ Σ such that Ii(t(s)) to be the new

active segment. Note that such a segment is guaranteed

to exist because the segment invariants cover I. More-

over, Σ is ordered, so every server will deterministically

pick the same active segment. In fact, an invariant of

the system model is that at any given point of normal

processing, every server has the same active segment.

Otherwise, if t ∈ Ti, then pi executes t immediately

and without coordination. If t(si) satisfies the active in-

variant (i.e. Ii(t(si))), then pi commits t, stays in state

t(si), and replies to the client. If t(si) violates the global

invariant (i.e. ¬I(t(si))), then pi aborts t, reverts to

state si, and replies to the client. If t(si) satisfies the

global invariant but violates the active invariant (i.e.

I(t(si)) but ¬Ii(t(si))), then pi reverts to state si and

initiates a round of global coordination to execute t, as

described in the previous paragraph. Transaction exe-

cution is summarized in Algorithm 2.

This system model guarantees that all replicas of

a segmented invariant confluent object always satisfy

the invariant. All servers begin in the same initial state

and with the same active segment. Thus, because O

is invariant confluent with respect to every segment,

servers can execute transactions within the active seg-

ment without any coordination and guarantee that the

invariant is never violated. Any operation that would

violate the assumptions of the invariant confluence sys-

tem model (e.g. executing a transaction that’s not per-

mitted in the active segment or executing a permit-

ted transaction that leads to a state outside the active

segment) triggers a global coordination. Globally co-

ordinated transactions are only executed if they main-

tain the invariant. Moreover, if a globally coordinated

transaction leads to another segment, the coordination

ensures that all servers begin in the same start state

and with the same active segment, reestablishing the

assumptions of the invariant confluence system model.

Interactive Checks for Coordination Avoidance 13

6.3 Interactive Decision Procedure

In order for us to determine whether or not an ob-

ject O is (s0, T, I,Σ)-confluent, we have to determine

whether or not O is invariant confluent within each seg-

ment (Ii, Ti) ∈ Σ. That is, we have determine if O is

(s, Ti, Ii)-confluent confluent for every state s ∈ Ii. Ide-

ally, we could leverage Algorithm 1, invoking it once per

segment. Unfortunately, Algorithm 1 can only be used

to determine if O is (s, Ti, Ii)-confluent for a particular

state s ∈ Ii, not for every state s ∈ Ii. Thus, we would

have to invoke Algorithm 1 |Ii| times for every segment

(Ii, Ti), which is clearly infeasible given that Ii can be

large or even infinite.

Instead, we develop a new decision procedure that

can be used to determine if an object is (s, T, I)-confluent

for every state s ∈ I. To do so, we need to extend

the notion of reachability to a notion of coreachability

and then generalize Theorem 3. Two states s1, s2 ∈ I
are coreachable with respect to T and I, abbreviated

(T, I)-coreachable, if there exists some state s0 ∈ I

such that s1 and s2 are both (s0, T, I)-reachable.

Example 7 Consider the object O = (N,max) consist-

ing of natural numbers merged by the max function.

Let I = N. Let T = {t2×, t+10} where t2×(x) = 2x

and t+10(x) = x + 10. The states 3 and 16 are (T, I)-

coreachable because both are (s, T, I)-reachable from

s = 3 (16 = 2 × 3 + 10). The states 3 and 5, however,

are not (T, I)-coreachable. The only state in which 3 is

reachable is 3, but from this state, the smallest reach-

able number larger than 3 is 6.

Theorem 6 Consider an object O = (S,t), a set of

transactions T , and an invariant I. If every pair of

states in the invariant are (T, I)-coreachable, then

O is I-closed ⇐⇒ ∀s ∈ I. O is (s, T, I)-confluent

Proof. The proof of the forward direction is exactly the

same as the proof of Theorem 2. Transactions always

maintain the invariant, so if merge does as well, then

every reachable state must satisfy the invariant. For the

reverse direction, consider two arbitrary states s1, s2 ∈
I. By assumption, the two points are (T, I)-coreachable,

so there exists some state s0 from which they can be

reached. O is (s0, T, I)-confluent and s1ts2 is (s0, T, I)-

reachable, so it satisfies the invariant.

Using Theorem 6, we develop Algorithm 3: a nat-

ural generalization of Algorithm 1. Algorithm 1 itera-

tively refines the set of reachable states whereas Algo-

rithm 3 iteratively refines the set of coreachable states,

but otherwise, the core of the two algorithms is the

Algorithm 3 Interactive invariant confluence decision

procedure for arbitrary start state s ∈ I
// Return if O is (s, T, I)-confluent for every s ∈ I.
function IsInvConfluent(O, T , I)

return Helper(O, T , I, ∅, ∅)

// R is a set of (T, I)-coreachable states.
// NR is a set of (T, I)-counreachable states.
function Helper(O, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I, NR)
if closed then return true
Augment R,NR with random search and user input
if (s1, s2) ∈ R then return false

return Helper(O, T , I, R, NR)

same.2 Now, a segmented invariant confluence decision

procedure, can simply invoke Algorithm 3 once on each

segment.

Example 8 Let O = (Z3 × Z3,t) be an object that

separately keeps positive and negative integer counts

(dubbed a PN-Counter [44]), replicated on three ma-

chines. Every state s = (p1, p2, p3), (n1, n2, n3) repre-

sents the integer (p1 + p2 + p3)− (n1 +n2 +n3). To in-

crement or decrement the counter, the ith server incre-

ments pi or ni respectively, and t computes an element-

wise maximum. Our start state s0 = (0, 0, 0), (0, 0, 0);

our set T of transactions consists of increment and

decrement; and our invariant I is that the value of s

is non-negative.

Applying Algorithm 1, IsIclosed returns false with

the states s1 = (1, 0, 0), (0, 1, 0) and s2 = (1, 0, 0), (0, 0, 1).

Both are reachable, so O is not (s0, T, I)-confluent and

Algorithm 1 returns false. O is not (s0, T, I)-confluent

because of concurrent decrements. We can forbid con-

current decrements using a simple one-segment segmen-

tation Σ = (I, T+) where T+ consists only of increment

transactions. Applying Algorithm 3, IsIclosed again

returns false with the same states s1 and s2. This time,

however, the user recognizes that the two states are not

(T+, I)-coreachable (all modifications of (n1, n2, n3) re-

quire global coordination, so it is impossible for s1 and

s2 to differ on these values). The user refines NR with

the observation that two states are coreachable if and

only if they have the same values of n1, n2, n3. After

this, IsIclosed and Algorithm 3 return true.

2 Another small difference is that IsIclosed behaves dif-
ferently in Algorithm 1 and Algorithm 3. In Algorithm 3,
IsIclosed returns a triple (closed, s1, s2). If closed is false,
then s1, s2 ∈ I are two states not in NR such that I(s1) and
I(s2) but ¬I(s1 t s2). If no such states exist, then closed is
true, and s1 and s2 are null.

14 Michael Whittaker, Joseph M. Hellerstein

6.4 Discussion and Limitations

There are a few things worth noting about segmented

invariant confluence, its system model, and its decision

procedure. First, invariant confluence is a very coarse-

grained property. If an object is invariant confluent,

then we can replicate it with no coordination. If it is

not invariant confluent, then we have no guarantees.

There’s no in-between. Segmented invariant confluence,

on the other hand, is a much more fine-grained property

that can be applied to applications with varying degrees

of complexity. Segmented invariant confluence provides

guarantees to complex applications that require a large

number of segments and to simple applications with a

smaller number of segments, whereas invariant conflu-

ence only provides guarantees to applications that can

be segmented into a single segment.

Second, while our segmented invariant confluence

decision procedure can help decide whether or not an

object is segmented invariant confluent, it cannot cur-

rently help construct a segmentation. It is the responsi-

bility of the programmer to think of a segmentation

that is amenable to segmented invariant confluence.

This can be an onerous process. In the future, we plan

to explore ways by which we can automatically suggest

segmentations to the application designer to ease this

process.

Third, segmented invariant confluence naturally sub-

sumes a distributed locking approach to replicating non-

invariant confluent objects. This approach first recog-

nizes which transactions cannot be safely executed con-

currently and then requires them to acquire a distributed

lock before executing [9, 21]. For example, in a banking
application with the invariant that all balances remain

non-negative, concurrent deposits are permitted, but

concurrent withdrawals can lead to invariant violations.

Thus, we require that withdrawals acquire a distributed

lock before executing. This example is exactly the same

as Example 8 which we handled by simply removing

withdrawal transactions from our segmentation’s set of

transactions.

Fourth, we can integrate a couple of optimizations

into our system model to further reduce the amount

of coordination it requires. To begin, if a server with

state si and active segment (Ii, Ti) receives a trans-

action t ∈ Ti to execute, and t(si) violates the active

invariant but not the global invariant, instead of initiat-

ing a round of global coordination, pi can simply buffer

t for re-execution at a later time. While this increases

the latency required to execute t, it’s possible that af-

ter other transactions are executed, re-executing t may

lead to a state that either satisfies the active invariant

or violates the global invariant. In either case, a round

of global coordination is avoided. Later, in Example 13,

we’ll see a concrete example of this optimization. Simi-

larly, servers can buffer transactions that require global

coordination, executing an entire batch of these trans-

actions during a single round of global coordination.

Fifth, a segmented invariant confluence decision pro-

cedure can also leverage Theorem 5 in addition to Al-

gorithm 3. If an object O meets criteria (1) - (3), then

it is (s, T, I)-confluent for every state s ∈ I.

Sixth, a naive implementation of our segmented in-

variant confluence system model is not fault tolerant. A

round of global coordination requires that every server

be non-faulty. If even a single server fails, then every

round of global coordination will fail to complete. For-

tunately, we can leverage well-established means of en-

suring fault tolerance. For example, we can replicate

every server using a state machine replication protocol

like MultiPaxos [29, 30] or Raft [40]. Doing so will in-

troduce a constant slowdown for each (now replicated)

server, but servers remain independent and scalable.

7 Operation Based Invariant Confluence

In the system model we described, a server pi periodi-

cally sends its state si to some other server pj for merg-

ing. In this “state-based” model, states are sent between

replicas but transactions are not. Borrowing a trick

from CRDTs [45, 44], we can define an alternate, but

equivalent, “operation-based” system model in which

transactions are sent between replicas but states are

not. Though the two models are equivalent, the operation-

based approach is sometimes more natural. For exam-

ple, with the operation-based approach, we can replace

the PN-counter from Example 8 with a simple integer.

7.1 System Model

A distributed operation-based object is a set O =

S of states. Note that we do not have a merge function

like we did with state-based objects. An operation-

based transaction t : S → (S → S) is a function that

maps a state s to a shadow transaction t(s) : S →
S [31]. Note that shadow transactions are curried func-

tions and, as we will see momentarily, can be partially

applied. The definition of an invariant is the same in

the state-based and operation-based models.

Example 9 N is a distributed operation-based object.

t : N → (N → N) is an operation-based transaction

where t(x)(y) = x+ y. That is, given a state x, t(x) is

the function fx where fx(y) = x+ y.

Interactive Checks for Coordination Avoidance 15

In our operation-based system model, a distributed

objectO is replicated across a set p1, . . . , pn of n servers.

Each server pi manages a replica si ∈ O of the repli-

cated object. Every server begins with a start state

s0 ∈ S, a fixed set T of transactions, and an invari-

ant I. Servers repeatedly perform one of two actions.

First, a client can contact a server pi and request

that it executes a transaction t ∈ T . pi speculatively ex-

ecutes t(si), transitioning from state si to state t(si)(si).

If t(si)(si) does not satisfy the invariant, then pi aborts

the transaction and reverts to state si. Otherwise, pi
commits the transaction and remains in state t(si)(si).

It also broadcasts the shadow transaction t(si) in an

exactly-once manner to the rest of the servers.

Second, pj can receive a shadow transaction t(si)

from some other server pi. When pj receives t(si), it

transitions from its state sj to state t(si)(sj). When pj
receives a shadow transaction, it must execute it, even

if ¬I(t(si)(sj)).

Informally, O is invariant confluent with respect to

s0, T , and I if every replica s1, . . . , sn is guaranteed to

always satisfy the invariant I in every possible execu-

tion of the system.

7.2 Expression-Based Formalism

To define operation-based invariant confluence formally,

we represent a state produced by an operation-based

system execution as a simple expression generated by

the grammar

e ::= s | t(e1)(e2)

where s represents a state in S and t represents a trans-

action in T . As an example, consider the system execu-

tion in Figure 8a in which a distributed object is repli-

cated across servers p1, p2, and p3. Server p3 begins with

state s0, receives transaction t, transitions to state s1

by executing shadow transaction t(s0), transitions to

state s3 by executing shadow transaction u(s0), and

then transitions to state s7 by executing shadow trans-

action v(s2). In Figure 8b, we see the abstract syntax

tree of the corresponding expression for state s7.

We say an expression e is (s0, T, I)-reachable if it

corresponds to a valid execution of our system model.

Formally, we define reachable(s0,T,I)(e) to be the small-

est predicate that satisfies the following equations:

– reachable(s0,T,I)(s0).

– For all expressions e1, e2 and for all transactions t in

T , if reachable(s0,T,I)(e1), reachable(s0,T,I)(e2), and

I(t(e1)(e1)), then reachable(s0,T,I)(t(e1)(e2)).

p3

p2

p1

s0 s1 s3 s6

s0 s2 s4 s7

s0 s2 s5 s8

t(s0)

u(s0)

v(s2)

u(s0) v(s2)

t(s0) v(s2)

u(s0) t(s2)

(a) System Execution

v
s7

u
s2

t
s4

s0

s0
s0 u

s2

s0 s0

(b) Expression

Fig. 8: An operation-based system execution and cor-

responding expression

Finally, we say O is invariant confluent with respect

to s0, T , and I, abbreviated (s0, T, I)-confluent, if all

reachable states satisfy the invariant:

{s ∈ S | reachable(s0,T,I)(s)} ⊆ I

8 Evaluation

In this section, we describe and evaluate Lucy: a pro-

totype implementation of our decision procedures and

system models. All code and all the specifications de-

scribed below are available online: https://github.com/

mwhittaker/enforced invariant confluence. The reposi-

tory also contains a couple more example specifications.

8.1 Implementation

Lucy includes an implementation of the interactive de-

cision procedure described in Algorithm 1, an imple-

mentation of a decision procedure that checks criteria

(1) - (4) from Theorem 5, and an implementation of the

decision procedure described in Algorithm 3. The deci-

sion procedures are implemented in roughly 2,500 lines

of Python. Programmers specify objects, transactions,

and invariants in a small Python DSL and interact with

the interactive decision procedures using an interactive

Python console. The Python DSL includes a library of

CRDTs including integers, booleans, tuples, sets, op-

tion types, and maps. It supports invariants involving

equalities, inequalities, arithmetic, boolean logic, and

basic set operations (e.g, union, intersection). Note that

https://github.com/mwhittaker/enforced_invariant_confluence
https://github.com/mwhittaker/enforced_invariant_confluence

16 Michael Whittaker, Joseph M. Hellerstein

a programmer only has to run the decision procedures

offline a single time to check the invariant confluence

of their distributed object. The decision procedures do

not have to be run online when transactions are being

processed.

We use Z3 [17] to implement our invariant closure

decision procedure, compiling an object and invariant

into a formula that is satisfiable if and only if the ob-

ject is not invariant closed. If the object is invariant

closed, then Z3 concludes that the formula is unsatis-

fiable. Otherwise, if the object is not invariant closed,

then Z3 produces a counterexample witnessing the sat-

isfiability of the formula.

Lucy also includes an implementation of the invari-

ant confluence and segmented invariant confluence sys-

tem models in roughly 3,500 lines of C++. Users spec-

ify objects, transactions, invariants, and segmentations

in C++. Lucy then replicates the objects using seg-

mented invariant confluence. Clients send every trans-

action request to a randomly selected server. When a

server receives a transaction request, it executes Algo-

rithm 2 to attempt to execute the transaction locally. If

the transaction requires global coordination, then the

server forwards the transaction request to a predeter-

mined leader. When the leader receives a transaction re-

quest, it broadcasts a coordination request to the other

servers. When a server receives a coordination request

from the leader, it stops processing transactions and

sends the leader its state. All in-flight transactions are

deferred until the global communication is complete.

When the leader receives the states of all other servers,

it executes the transaction, and then sends its state to

the other servers. When a server receives a new state,

it adopts the state, computes its new active segment,

and resumes normal processing. After every 100 trans-

actions processed, a server sends a merge request to a

randomly selected server.

Lucy can also replicate an object with eventual con-

sistency and with linearizability. With eventual consis-

tency, clients send every transaction request to a ran-

domly selected server. The server executes the transac-

tion locally and returns immediately to the client, send-

ing merge requests after every 100 transactions. With

linearizability, clients send every transaction request to

a predetermined leader. The leader relays the transac-

tion request to all other servers, and when the leader

receives replies from them, it executes the transaction

and replies to the client. This communication pattern

mimics the “normal operation” of state machine repli-

cation protocols [29, 34].

Because fault-tolerance is largely an orthogonal con-

cern to invariant confluence, Lucy is implemented with-

out fault-tolerance. It would be straightforward to add

Table 1: Example 10 to Example 14 summary. For ev-

ery example, we list the time required (in seconds) to

run our decision procedures to completion (excluding

human input time) as well as the number of lines of

code to specify the example

Example Run time (s) Lines of code

10 0.09 7
11 (all transactions) 0.06 8
11 (limited transactions) 0.09 10
12 0.04 21
13 0.09 49
14 (Invariant 1) 0.46 66
14 (Invariant 2) 0.44 33

fault-tolerance to Lucy, but it would not affect our dis-

cussions or evaluation, so we leave it for future work.

8.2 Decision Procedures

We now evaluate the practicality and efficiency of our

decision procedure prototypes. We begin by demon-

strating the decision procedure on a handful of simple,

yet practical examples. We then discuss how our tool

can be used to analyze the TPC-C benchmark. All de-

cision procedures were run on a MacBook Pro laptop

with a 3.5 GHz Intel Core i7 processor and 16 GB of

RAM. A summary of these results is given in Table 1.

Example 10 (Z2) We begin with a minimal working ex-

ample. Consider again our recurring example of Z2 from

Example 2. The Python code used to describe the ob-

ject, transactions, and invariant is given in Figure 9.

When we call checker.check(), the interactive decision

procedure produces a counterexample s1 = (0, 1), s2 =

(1, 0) in less than a tenth of a second and automati-

cally recognizes that s2 is reachable. After we label s1

as unreachable and refine the invariant with y ≤ 0, the

interactive decision procedure determines that the ob-

ject is invariant confluent, again, in less than a tenth

of a second. Note that the object is invariant confluent

but not invariant closed, so prior work [32, 31, 10, 21]

that relies on invariant closure—or another equivalent

sufficient condition—to determine invariant confluence

would not be able to identify this example as invariant

confluent.

Example 11 (Foreign Keys) A 2P-Set X = (AX , RX)

is a set CRDT composed of a set of additions AX and

a set of removals RX [44]. We view the state of the

set X as the difference AX − RX of the addition and

removal sets. To add an element x to the set, we add

x to AX . Similarly, to remove x from the set, we add

Interactive Checks for Coordination Avoidance 17

checker = InteractiveInvariantConfluenceChecker()
x = checker.int_max(’x’, 0) # An int, x, merged by max.
y = checker.int_max(’y’, 0) # An int, y, merged by max.
checker.add_transaction(’increment_x’, [x.assign(x + 1)])
checker.add_transaction(’decrement_y’, [y.assign(y - 1)])
checker.add_invariant(x * y <= 0)
checker.check()

Fig. 9: Example 10 specification

it to RX . The merge of two 2P-sets is a pairwise union

(i.e. (AX , RX) t (AY , RY) = (AX ∪AY , RX ∪RY)).

We can use 2P-sets to model a simple relational

database with foreign key constraints. Let object O =

(X,Y) = ((AX , RX), (AY , RY)) consist of a pair of two

2P-Sets X and Y , which we view as relations. Our in-

variant X ⊆ Y (i.e. (AX−RX) ⊆ (AY −RY)) models a

foreign key constraint from X to Y . We ran our decision

procedure on the object with initial state ((∅, ∅), (∅, ∅))
and with transactions that allow arbitrary insertions

and deletions into X and Y . After less than a tenth of

a second, the decision procedure produced a reachable

counterexample witnessing the fact that the object is

not invariant confluent. A concurrent insertion into X

and deletion from Y can lead to a state that violates

the invariant. This object is not invariant confluent and

therefore not invariant closed. Thus, previous tools de-

pending on invariant closure as a sufficient condition

would be unable to conclude definitively that the ob-

ject is not invariant confluent.

We also reran the decision procedure, but this time

with insertions into X and deletions from Y disallowed.

In less than a tenth of a second, the decision procedure

correctly deduced that the object is now invariant con-

fluent. These results were manually proven in [8], but

our tool was able to confirm them automatically in a

negligible amount of time.

Example 12 (Auction) We now consider a simple auc-

tion system introduced in [21]. Our object consists of

a set B of integer-valued bids and an optional winning

bid w. Initially, B = ∅ and w = ⊥ (indicating that

there is no winning bid yet) and we merge states by

taking the union of B and the maximum of w (where

⊥ < n for all integers n). One transaction tb places a

bid b by inserting it into B. Another transaction tclose

closes the auction and sets w equal to the largest bid

in B. Our invariant is that if the auction is closed (i.e.

w 6= ⊥), then w = max(B). We ran our decision proce-

dure on this example and in a third of a second, it pro-

duced a reachable counterexample witnessing the fact

that the object is not invariant confluent. If we concur-

rently close the auction and place a large bid, then we

can end up in a state in which the auction is closed, but

there is a bid in B larger than w.

We then segmented our object as follows. The first

segment ({(B,w) |w = ⊥}, {tb | b ∈ Z}) allows bid-

ding so long as the bid is open. The second segment

({B,w |w 6= ⊥} ∩ I, ∅) includes all auctions that have

already been closed and forbids all transactions. This

segmentation captures the intuition that bids should be

permitted only when the auction is open. We ran our

segmented invariant confluence decision procedure on

this example, and it was able to deduce without any

human interaction that the example was segmented in-

variant confluent in less than a tenth of a second.

Example 13 (Escrow Transactions) Escrow transactions

are a concurrency control technique that allows a database

to execute transactions that increment and decrement

numeric values with more concurrency than is other-

wise possible with general-purpose techniques like two-

phase locking [39]. The main idea is that a portion of

the numeric value is put in escrow, after which a trans-

action can freely decrement the value so long as it is not

decremented by more than the amount that has been

escrowed. We show how segmented invariant confluence

can be used to implement escrow transactions.

Consider again, from Example 8, the PN-Counter

s = (p1, p2, p3), (n1, n2, n3) replicated on three servers

with transactions to increment and decrement the PN-

Counter. In Example 8, we found that concurrent decre-

ments violate invariant confluence which led us to a seg-

mentation which prohibited concurrent decrements. We

now propose a new segmentation with escrow amount

k that will allow us to perform concurrent decrements

that respect the escrowed value. The first segment is

(Ik, T) where

Ik = {(p1, p2, p3), (n1, n2, n3) |n1, n2, n3 ≤ k ≤ p1, p2, p3}

This segment allows for concurrent increments and decre-

ments so long as every pi ≥ k and every ni ≤ k. Intu-

itively, this segment represents the situation in which

every server has escrowed a value of k. They can decre-

ment freely, so long as they don’t exceed their escrow

budget of k. The second segment is the one presented

in Example 8 which prohibits concurrent decrements.

For example, assume that k = 3 and that the three

states are s1 = s2 = s3 = (p1, p2, p3), (n1, n2, n3) =

(3, 3, 3), (3, 2, 1). Here, the value of the PN-counter is

(3 + 3 + 3) − (3 + 2 + 1) = 3, which is non-negative

as expected. If server 1 receives a decrement request,

it cannot execute the decrement without global coordi-

nation because doing so would cause n1 to exceed the

escrow threshold k = 3. Naively, it seems safe. Server

1 would transition to state (3, 3, 3), (4, 2, 1) which has

non-negative value 2. However, if servers 2 and 3 con-

currently perform decrements of their own, the three

18 Michael Whittaker, Joseph M. Hellerstein

servers’ states would merge to a negative value. Thus,

the decrement requires global coordination to rule out

the possibility of concurrent decrements.

On the other hand, if server 2 receives a decrement

request, it can safely execute it locally and transition

to state (3, 3, 3), (3, 3, 1). This is safe because server 2

knows that every server i maintains pi ≥ ni. Thus, after

merging, the value of the PN-counter is
∑

i pi−
∑

i ni =∑
i(pi − ni) which is the sum of non-negative terms.

Intuitively, if every server agrees to never go in debt,

then the PN-counter in aggregate never goes in debt.

We ran our decision procedure on this example and

it concluded that it was segmented invariant confluent

in less than a tenth of a second and without any human

interaction.

In Section 6.4, we discussed an optimization in which

a server receives a transaction t and concludes that the

transaction requires global coordination. The server can

defer the execution of t, executing other transactions in

the mean time. When the server tries to execute t a sec-

ond time, the transaction may no longer require global

coordination.

Escrow transactions are a good example where this

optimization works particularly well. Assume that in-

stead of using PN-counters, we implement a replicated

bank account balance as a tuple of timestamped in-

tegers (x1, x2, . . . , xn), with the value of the bank ac-

count being the sum of the integers, with merging done

element-wise, and with higher timestamps overriding

lower timestamps [49]. Every time a sever si increments

or decrements its integer xi, it increases the integer’s

timestamp. We consider the segmentation in which decre-

ments do not require global coordination so long as ev-

ery individual integer remains non-negative.

If a server’s integer is zero, it cannot process a decre-

ment transaction locally, it must execute it with global

coordination. However, if the server instead defers the

execution of the decrement transaction and happens

to receive a number of increment transactions, then it

can execute the decrement locally, without the need for

global coordination.

Example 14 (TPC-C) TPC-C is a ubiquitous OLTP

benchmark with a workload that models a simple ware-

housing application [19]. The TPC-C specification out-

lines twelve “consistency requirements” (read invari-

ants) that govern the warehousing application. In [8],

Bailis et al. categorize the invariants into one of three

types:

Three of the twelve invariants involve foreign key

constraints. As discussed in Example 11, our decision

procedures can automatically verify conditions under

which foreign key constraints are invariant confluent.

Seven of the twelve invariants involve maintain-

ing arithmetic relationships between relations.

Our decision procedures can correctly identify these as

invariant confluent. Consider, for example, invariant 1

which dictates that a warehouse’s year to date balance

W YTD is equal to the sum of the district year to date

balances D YTD of the twenty districts that are asso-

ciated with the warehouse. The Payment transaction

randomly selects a district and increments W YTD and

D YTD by a randomly generated amount. We model this

workload with a PN-Counter for W YTD and twenty PN-

Counters for the twenty instances of D YTD. We applied

Lucy to this workload, and it determined that the work-

load was invariant confluent in less than a second.

Two of the twelve invariants involve generating se-

quential and unique identifiers. Consider, for ex-

ample, invariant 2 which dictates that a district’s next

order ID D NEXT O ID is equal to the maximum order id

O ID of orders within the district. The New Order trans-

action places an order with O ID equal to the current

value of D NEXT O ID and then increments D NEXT O ID.

We model this workload with an integer for D NEXT O ID
and a map for O ID that maps order IDs to order. We

applied Lucy to this workload and in less than a sec-

ond, it produced a counterexample that—when labelled

as reachable—confirms Bailis et al.’s finding that the

workload is not invariant confluent [8]. Thus, the TPC-

C benchmark requires some form of coordination to en-

sure unique and sequential IDs. Alternatively, as Bailis

et al. describe in [8], the workload can be run coor-

dination free if we drop the requirement that IDs are

assigned sequentially.

8.3 Segmented Invariant Confluence

Now, we evaluate the performance of replicating an ob-

ject with segmented invariant confluence as compared

to the performance of replicating it with eventual con-

sistency or linearizability. There are two hypotheses

about the performance of segmented invariant conflu-

ent replication that we aim to confirm. First, segmented

invariant confluent replication provides higher through-

put and better scalability than linearizable replication

for workloads that require little coordination (i.e. low-

coordination workloads). Second, the throughput and

scalability of segmented invariant confluent replication

decreases as we increase the fraction of transactions

that require coordination.

These hypotheses state that segmented invariant con-

fluent replication is more performant than linearizable

replication for low-coordination workloads. But by how

much? We also aim to measure the absolute perfor-

mance and scalability benefits of segmented invariant

Interactive Checks for Coordination Avoidance 19

0.0 0.2 0.4 0.6 0.8 1.0
Decrement Frequency (fraction of workload)

104

105

Th
ro

ug
hp

ut
 (t

xn
s/

s)

eventual linearizable segmented

Fig. 10: Segmented invariant confluent replication

throughput versus coordination induced by executing

disallowed decrement transactions

confluent replication and how they vary as we vary the

coordination required by a workload. We perform two

controlled microbenchmarks to confirm our hypothe-

ses and discover the absolute performance benefits. The

workloads themselves are trivial but are not the focus of

our experiments. Our objective is to obtain a controlled

measure of throughput and scalability as we vary work-

load contention.

Benchmark 1. Consider again the PN-Counter from

Example 8 and the corresponding transactions, invari-

ants, and single-segment segmentation that forbids con-

current decrements. We replicate this object on 16 servers

deployed on 16 m5.xlarge EC2 instances within the

same availability zone. Each server has three colocated

clients that issue increment and decrement transactions.

We replicate the object with eventual consistency, seg-

mented invariant confluence, and linearizability and mea-

sure the system’s total throughput as we vary the frac-
tion of client requests that are decrements. The results

are shown in Figure 10.

Both eventually consistent replication and lineariz-

able replication are unaffected by the workload, achiev-

ing roughly 375,000 and 12,000 transactions per second

respectively. Segmented invariant confluent replication

performs well for low-decrement (i.e. low-coordination)

workloads and performs increasingly poorly as we in-

crease the fraction of decrement transactions, eventu-

ally performing worse than linearizable replication. For

example, with 5% decrement transactions, segmented

invariant confluent replication performs over an order

of magnitude better than linearizable replication; with

50% decrements, it performs as well; and with 100%

decrements, it performs two times worse.

These results offer two insights. First, the relation-

ship between segmented invariant confluent and lin-

earizable replication is analogous to the relationship

between optimistic and pessimistic concurrency con-

trol protocols. Linearizable replication pessimistically

5 10 15 20 25 30
Number of Nodes

104

105

Th
ro

ug
hp

ut
 (t

xn
s/

s)

eventual
linearizable

segmented (0.01)
segmented (0.05)

segmented (0.2)
segmented (0.5)

Fig. 11: Throughput of eventually consistent, seg-

mented invariant confluent, and linearizable replication

measured against the number of nodes for workloads

with varying fractions of decrement transactions. For

example, the “segmented (0.2)” line measures the per-

formance of segmented invariant confluent replication

with 20% decrement transactions. Eventually consis-

tent replication and linearizable replication are not af-

fected by workload

assumes that concurrently executing any pair of trans-

actions will lead to an invariant violation. Thus, clients

send transactions directly to a leader to be linearized.

Conversely, segmented invariant confluent replication

optimistically attempts to perform every transaction lo-

cally and without coordination. A server only initiates

a round of coordination if it is found to be necessary.

As a consequence, segmented invariant confluent repli-

cation can offer substantial performance benefits over

linearizable replication for low-coordination workloads.

However, it is inferior for medium to high contention

workloads because the majority of transactions that are

sent to a server are eventually aborted and relayed to

the leader. This additional latency is avoided by lin-

earizable replication which sends transactions directly

to the leader.

Second, throughput does not decrease linearly with

the amount of coordination. Even infrequent coordi-

nation can drastically decrease throughput. Increasing

the fraction of decrements from 0% to 1% decreases

throughput by a factor of 2. Increasing again to 3%, the

throughput decreases by another factor of 2. With 90%

coordination-free transactions (i.e. 10% decrements),

we achieve only 10% of the throughput of eventually

consistent replication.

Benchmark 2. In this benchmark, we measure the

scale-out of segmented invariant confluent replication.

We repeat Benchmark 1 while we vary the number of

servers that we use to replicate our object. When we

20 Michael Whittaker, Joseph M. Hellerstein

replicate with n servers, we use 3n clients (the 3 colo-

cated clients on each server) as part of the workload.

The results are shown in Figure 11.

Eventually consistent replication scales perfectly with

the number of nodes, confirming the results in [8]. Lin-

earizable replication, on the other hand, scales up to

about 3 servers before performance begins to decrease.

Segmented invariant confluent replication scales well

for low-coordination workloads and poorly for high-

coordination workloads. For 1%, 5%, 20%, and 50%

decrement transactions, segmented invariant confluent

replication scales up to 24, 12, 4, and 1 server respec-

tively.

These results echo the results of Benchmark 1. For

low-coordination workloads, segmented invariant con-

fluent replication can offer almost an order of magni-

tude better scalability compared to linearizable repli-

cation, but coordination decreases scalability superlin-

early. Even infrequent coordination can drastically re-

duce the scalability of segmented invariant confluent

replication with segmented invariant confluent replica-

tion ultimately scaling worse than linearizable replica-

tion for high-coordination workloads.

9 Related Work

RedBlue Consistency and SIEVE. RedBlue con-

sistency is a consistency model that sits between causal

consistency and linearizability [32]. With RedBlue con-

sistency, every operation is manually labelled as either

red or blue. All operations are executed with causal

consistency, but with the added restrictions that red op-

erations are executed in a single total order embedded

within the causal ordering. In [32], Li et al. introduce in-

variant safety as a sufficient (but not necessary) condi-

tion for RedBlue consistent objects to be invariant con-

fluent. Invariant safety is an analog of invariant closure.

In [31], Li et al. develop sophisticated techniques for

deciding invariant safety that involve calculating weak-

est preconditions. These techniques are complementary

to our work and can be used to improve the invariant

closure subroutine used by our decision procedures. In

contrast with these techniques, our invariant confluence

decision procedures can determine the invariant conflu-

ence of objects that are not invariant safe.

The Demarcation and Homeostasis Protocols.

The homeostasis protocol [42], a generalization of the

demarcation protocol [11], uses program analysis to avoid

unnecessary coordination between servers in a sharded

database (whereas invariant confluence targets repli-

cated databases). The protocol guarantees that transac-

tions are executed with observational equivalence with

respect to some serial execution of the transactions.

This means that intermediate states may be inconsis-

tent, but externally observable side effects and the fi-

nal database state are consistent. The observational

equivalence guaranteed by the homeostasis protocol is

stronger than the guarantees of invariant confluence.

As a result, there are invariants and workloads that the

homeostasis protocol would execute with more coordi-

nation than a segmented invariant confluent execution.

Moreover, the homeostasis and demarcation protocols’

mechanism of establishing global invariants and oper-

ating without coordination so long as the invariants are

maintained is very similar to our design of segmented

invariant confluence.

Explicit Consistency. Explicit consistency [10] is

a consistency model that combines invariant confluence

and causal consistency, similar to RedBlue consistency

with invariant safety. To determine if a workload is

amenable to explicitly consistent replication, Balegas

et al. determine if all pairs of transactions can be con-

currently executed on the same start state without vi-

olating the invariant [10]. Balegas et al. argue that this

is a sufficient condition for explicit consistency. It is

similar to criterion (3) in Theorem 5. In our work, we

take a step further and explore sufficient and neces-

sary conditions for invariant confluence. Balegas et al.

also describe a variety of techniques—like conflict reso-

lution, locking, and escrow transactions [39]—that can

be used to replicate workloads that do not meet their

sufficient conditions. Segmented invariant confluence is

a general-purpose formalism that can be used to model

simple forms of these techniques.

Token Based Invariant Confluence. In [21], Gots-
man et al. discuss a hybrid token based consistency

model that generalizes a family of consistency mod-

els including causal consistency, sequential consistency,

and RedBlue consistency. An application designer de-

fines a set of tokens and specifies which pairs of tokens

conflict, and transactions acquire some subset of the

tokens when they execute. This allows the application

designer to specify which transactions conflict with one

another. Gotsman et al. develop sufficient conditions to

determine whether a given token scheme is sufficient

to guarantee that a global invariant is never broken.

The token based approach allows users to specify cer-

tain conflicts that are not possible with segmented in-

variant confluence because a segmentation only allows

transactions within a segment to acquire a single self-

conflicting lock. However, segmented invariant conflu-

ence also introduces the notion of invariant segmenta-

tion, which cannot be emulated with the token based

approach. For example, it is difficult to emulate escrow

transactions with the token based approach.

Interactive Checks for Coordination Avoidance 21

Serializable Distributed Databases. In Section 8,

we saw that segmented invariant confluent replication

vastly outperforms linearizable replication for low co-

ordination workloads, and it performs comparably or

worse for medium and high coordination workloads.

Distributed databases like Calvin [47], Janus [38], and

TAPIR [51] employ algorithmic optimizations to im-

plement serializable transactions with high throughput

and low latency. While segmented invariant confluent

replication will likely always outperform serializable repli-

cation for low coordination workloads, these databases

make serializable replication the most performant op-

tion for executing workloads that require a modest amount

of coordination.

Branch and Merge. Bayou [46], Dynamo [18], and

TARDiS [16] all take a branch and merge approach

to maintaining distributed invariants without coordi-

nation. With this approach, servers execute transac-

tions without any coordination but keep track of the

causal dependencies between transactions. Periodically,

two servers merge states and invoke a user defined merge

function to reconcile the divergent states. This approach

does not provide any formal guarantees that invariants

are maintained. Its correctness depends on the correct-

ness of the potentially complex user defined merge func-

tions.

CRDTs. CRDTs [45, 44] are distributed semilat-

tices with inflationary update methods. Due to their al-

gebraic properties, CRDTs can be replicated with strong

eventual consistency without the need for any coordi-

nation. Our definition of distributed objects and our

invariant confluence system model are inspired directly

by the corresponding definitions and system models

in [45]. CRDTs are eventually consistent but may not

preserve invariants. Conversely, invariant confluent ob-

jects preserve invariants but may not be eventually con-

sistent. Thus, it is natural (though not necessary) to use

CRDTs as distributed objects. If a CRDT is determined

to be invariant confluent with respect to a particular in-

variant and set of transactions, then it achieves a com-

bination of strong eventual consistency and invariant

preservation. Any CRDT (e.g., counters, sets, graphs,

sequences) can be used for this purpose. Finally, our

criteria in Theorem 5 also borrow ideas from CRDTs,

exploiting the algebraic properties of semilattices.

Mergeable Replicated Data Types. Mergeable

Replicated Data Types (MRDTs) [27], like CRDTs,

are eventually consistent replicated objects. CRDTs get

their eventual consistency by merging two CRDT repli-

cas using a commutative, associative, and idempotent

merge function. MRDTs instead merge two divergent

replicas along with their least common ancestor. MRDTs

rely on an abstraction function α and concretization

function γ to map abstract data types to the domain

of relations. Given these two functions, one can derive

an appropriate merge function.

Like CRDTs, MRDTs are eventually consistent but

may not preserve invariants, while invariant confluent

objects preserve invariants but may not be eventually

consistent. An interesting direction for future work would

be to generalize invariant confluence’s use of binary

merge operators to use the ternary merge operators

used by MRDTs.

CALM Theorem. Bloom [4, 5, 15] and its for-

malism, Dedalus [6, 3], are declarative Datalog-based

programming languages that are designed to program

distributed systems. The accompanying CALM theo-

rem [24, 7] states that if and only if a program can be

written in the monotone fragment of these languages,

then there exists a consistent, coordination-free imple-

mentation of the program. The CALM theorem pro-

vides guarantees about the consistency of program out-

puts. It does not directly capture our notions of transac-

tions or invariant maintenance during program execu-

tion. Moreover, Bloom and Dedalus are general-purpose

programming languages that can be used to implement

a variety of distributed systems that are outside of the

scope of invariant confluence.

Program Analysis in Database Systems. Us-

ing program analysis to improve the performance of

database systems is not new. For example, it has been

used to improve the performance of database-backed

web applications [14, 50, 41] and used to improve the

performance of optimistic concurrency control on multi-

core machines [50]. Our work on invariant confluence

continues the theme of using program analysis to reap

the performance benefits gained from understanding

program semantics.

10 Conclusion

This paper revolved around two major contributions.

First, we developed a deeper understanding of invari-

ant closure and invariant confluence by looking at the

two criteria with reachability in mind. We found that

invariant closure fails to incorporate a notion of reacha-

bility, and using this intuition, we developed conditions

under which invariant closure and invariant confluence

are equivalent. We implemented this insight in an inter-

active invariant confluence decision procedure that au-

tomatically checks whether an object is invariant con-

fluent, with the assistance of a programmer.

Second, we proposed a new consistency model and

generalization of invariant confluence, segmented in-

variant confluence, that can be used to replicate non-

22 Michael Whittaker, Joseph M. Hellerstein

invariant confluent objects with a small amount of co-

ordination while still preserving their invariants. We

found that segmented invariant confluence naturally

subsumes existing techniques for maintaining invariants

of replicated objects (e.g. locking and escrow transac-

tions), and we developed an interactive decision proce-

dure for segmented invariant confluence.

Through our evaluation, we found that our decision

procedures could analyze a number of realistic work-

loads, each in less than a second. We also showed that

segmented invariant confluence can significantly out-

perform linearizable replication for low-coordination work-

loads.

Acknowledgments. The authors would like to thank

Alan Fekete, Alexandra Meliou, Alvin Cheung, Anthony

Tan, Cristina Teodoropol, Peter Alvaro, and Peter Bailis,

for fruitful discussion and feedback. This research is

supported in part by DHS Award HSHQDC-16-3-00083,

NSF CISE Expeditions Award CCF-1139158, and gifts

from Alibaba, Amazon Web Services, Ant Financial,

CapitalOne, Ericsson, GE, Google, Huawei, Intel, IBM,

Microsoft, Scotiabank, Splunk and VMware.

References

1. D. Abadi. Consistency tradeoffs in modern dis-

tributed database system design: Cap is only part

of the story. Computer, 45(2):37–42, 2012.

2. M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and

P. W. Hutto. Causal memory: Definitions, imple-

mentation, and programming. Distributed Comput-

ing, 9(1):37–49, 1995.

3. P. Alvaro, T. J. Ameloot, J. M. Hellerstein,

W. Marczak, and J. Van den Bussche. A declar-

ative semantics for dedalus. Technical Report

UCB/EECS-2011-120, EECS Department, Univer-

sity of California, Berkeley, Nov 2011.

4. P. Alvaro, T. Condie, N. Conway, K. Elmeleegy,

J. M. Hellerstein, and R. Sears. Boom analytics: ex-

ploring data-centric, declarative programming for

the cloud. In Proceedings of the 5th European

conference on Computer systems, pages 223–236.

ACM, 2010.

5. P. Alvaro, N. Conway, J. M. Hellerstein, and W. R.

Marczak. Consistency analysis in bloom: a calm

and collected approach. In CIDR, pages 249–260,

2011.

6. P. Alvaro, W. R. Marczak, N. Conway, J. M. Heller-

stein, D. Maier, and R. Sears. Dedalus: Datalog in

time and space. In Datalog Reloaded, pages 262–

281. Springer, 2011.

7. T. J. Ameloot, F. Neven, and J. Van den Bussche.

Relational transducers for declarative networking.

Journal of the ACM (JACM), 60(2):15, 2013.

8. P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi,

J. M. Hellerstein, and I. Stoica. Coordination avoid-

ance in database systems. PVLDB, 8(3):185–196,

2014.

9. V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues,

N. Preguiça, M. Najafzadeh, and M. Shapiro.

Putting consistency back into eventual consistency.

In Proceedings of the Tenth European Conference

on Computer Systems. ACM, 2015.

10. V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues,

N. Preguiça, M. Najafzadeh, and M. Shapiro. To-

wards fast invariant preservation in geo-replicated

systems. ACM SIGOPS Operating Systems Review,

49(1):121–125, 2015.

11. D. Barbará-Millá and H. Garcia-Molina. The de-

marcation protocol: A technique for maintaining

constraints in distributed database systems. The

VLDB Journal, 3(3):325–353, 1994.

12. P. A. Bernstein and N. Goodman. Concurrency

control in distributed database systems. ACM

Computing Surveys (CSUR), 13(2):185–221, 1981.

13. E. Brewer. Cap twelve years later: How the” rules”

have changed. Computer, 45(2):23–29, 2012.

14. A. Cheung, S. Madden, A. Solar-Lezama, O. Ar-

den, and A. C. Myers. Using program analysis to

improve database applications. IEEE Data Eng.

Bull., 37(1):48–59, 2014.

15. N. Conway, W. Marczak, P. Alvaro, J. M.

Hellerstein, and D. Maier. Logic and lattices

for distributed programming. Technical Report

UCB/EECS-2012-167, EECS Department, Univer-

sity of California, Berkeley, Jun 2012.

16. N. Crooks, Y. Pu, N. Estrada, T. Gupta, L. Alvisi,

and A. Clement. Tardis: A branch-and-merge ap-

proach to weak consistency. In Proceedings of the

2016 International Conference on Management of

Data, pages 1615–1628. ACM, 2016.

17. L. De Moura and N. Bjørner. Z3: An efficient smt

solver. In International conference on Tools and Al-

gorithms for the Construction and Analysis of Sys-

tems, pages 337–340. Springer, 2008.

18. G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-

lapati, A. Lakshman, A. Pilchin, S. Sivasubrama-

nian, P. Vosshall, and W. Vogels. Dynamo: ama-

zon’s highly available key-value store. In ACM

SIGOPS operating systems review, volume 41,

pages 205–220. ACM, 2007.

19. D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-

Mauroux. Oltp-bench: An extensible testbed

for benchmarking relational databases. PVLDB,

Interactive Checks for Coordination Avoidance 23

7(4):277–288, 2013.

20. S. Gilbert and N. Lynch. Brewer’s conjecture and

the feasibility of consistent, available, partition-

tolerant web services. ACM SIGACT News,

33(2):51–59, 2002.

21. A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh,

and M. Shapiro. ’cause i’m strong enough: Rea-

soning about consistency choices in distributed sys-

tems. ACM SIGPLAN Notices, 51(1):371–384,

2016.

22. P. W. Grefen and P. M. Apers. Integrity control

in relational database systemsan overview. Data &

Knowledge Engineering, 10(2):187–223, 1993.

23. A. Gupta and J. Widom. Local verifica-

tion of global integrity constraints in distributed

databases. ACM SIGMOD Record, 22(2):49–58,

1993.

24. J. M. Hellerstein. The declarative imperative: expe-

riences and conjectures in distributed logic. ACM

SIGMOD Record, 39(1):5–19, 2010.

25. M. P. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Sys-

tems (TOPLAS), 12(3):463–492, 1990.

26. C. A. R. Hoare. An axiomatic basis for com-

puter programming. Communications of the ACM,

12(10):576–580, 1969.

27. G. Kaki, S. Priya, K. Sivaramakrishnan, and S. Ja-

gannathan. Mergeable replicated data types. Pro-

ceedings of the ACM on Programming Languages,

3(OOPSLA):1–29, 2019.

28. D. Kröning, P. Rümmer, and G. Weissenbacher. A

proposal for a theory of finite sets, lists, and maps

for the smt-lib standard. In Informal proceedings,

7th International Workshop on Satisfiability Mod-

ulo Theories at CADE, volume 22, 2009.

29. L. LAMPORT. The part-time parliament. ACM

Transactions on Computer Systems, 16(2):133–169,

1998.

30. L. Lamport et al. Paxos made simple. ACM Sigact

News, 32(4):18–25, 2001.

31. C. Li, J. Leitão, A. Clement, N. Preguiça, R. Ro-

drigues, and V. Vafeiadis. Automating the choice

of consistency levels in replicated systems. In 2014

USENIX Annual Technical Conference (USENIX

ATC 14), pages 281–292, 2014.

32. C. Li, D. Porto, A. Clement, J. Gehrke,

N. Preguiça, and R. Rodrigues. Making geo-

replicated systems fast as possible, consistent when

necessary. In Presented as part of the 10th USENIX

Symposium on Operating Systems Design and Im-

plementation (OSDI 12), pages 265–278, 2012.

33. R. J. Lipton and J. S. Sandberg. Pram: A scal-

able shared memory. Technical Report TR-180-88,

Computer Science Department, Princeton Univer-

sity, August 1988.

34. B. Liskov and J. Cowling. Viewstamped replication

revisited. Technical Report MIT-CSAIL-TR-2012-

021, CSAIL, Massachusetts Institute of Technology,

July 2012.

35. W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.

Andersen. Don’t settle for eventual: scalable causal

consistency for wide-area storage with cops. In

Proceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles, pages 401–416.

ACM, 2011.

36. S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi,

N. Bronson, and W. Lloyd. I can’t believe it’s not

causal! scalable causal consistency with no slow-

down cascades. In NSDI, pages 453–468, 2017.

37. C. Mohan, B. Lindsay, and R. Obermarck. Trans-

action management in the r* distributed database

management system. ACM Transactions on

Database Systems (TODS), 11(4):378–396, 1986.

38. S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidat-

ing concurrency control and consensus for commits

under conflicts. In OSDI, pages 517–532, 2016.

39. P. E. O’Neil. The escrow transactional method.

ACM Transactions on Database Systems (TODS),

11(4):405–430, 1986.

40. D. Ongaro and J. K. Ousterhout. In search of an

understandable consensus algorithm. In USENIX

Annual Technical Conference, pages 305–319, 2014.

41. K. Ramachandra, R. Guravannavar, and S. Sudar-

shan. Program analysis and transformation for

holistic optimization of database applications. In

Proceedings of the ACM SIGPLAN International

Workshop on State of the Art in Java Program

analysis, pages 39–44. ACM, 2012.

42. S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat,

C. Koch, N. Foster, and J. Gehrke. The home-

ostasis protocol: Avoiding transaction coordina-

tion through program analysis. In Proceedings of

the 2015 ACM SIGMOD International Conference

on Management of Data, pages 1311–1326. ACM,

2015.

43. F. B. Schneider. Implementing fault-tolerant ser-

vices using the state machine approach: A tutorial.

ACM Computing Surveys (CSUR), 22(4):299–319,

1990.

44. M. Shapiro, N. Preguiça, C. Baquero, and M. Za-

wirski. A comprehensive study of convergent and

commutative replicated data types. PhD thesis,

Inria–Centre Paris-Rocquencourt; INRIA, 2011.

24 Michael Whittaker, Joseph M. Hellerstein

45. M. Shapiro, N. Preguiça, C. Baquero, and M. Za-

wirski. Conflict-free replicated data types. In Sym-

posium on Self-Stabilizing Systems, pages 386–400.

Springer, 2011.

46. D. B. Terry, M. M. Theimer, K. Petersen, A. J.

Demers, M. J. Spreitzer, and C. H. Hauser. Man-

aging update conflicts in Bayou, a weakly connected

replicated storage system, volume 29. ACM, 1995.

47. A. Thomson, T. Diamond, S.-C. Weng, K. Ren,

P. Shao, and D. J. Abadi. Calvin: fast distributed

transactions for partitioned database systems. In

Proceedings of the 2012 ACM SIGMOD Interna-

tional Conference on Management of Data, pages

1–12. ACM, 2012.

48. W. Vogels. Eventually consistent. Communications

of the ACM, 52(1):40–44, 2009.

49. C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein. Anna:

A kvs for any scale. IEEE Transactions on Knowl-

edge and Data Engineering, 2019.

50. Y. Wu, C.-Y. Chan, and K.-L. Tan. Transaction

healing: Scaling optimistic concurrency control on

multicores. In Proceedings of the 2016 International

Conference on Management of Data, pages 1689–

1704. ACM, 2016.

51. I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-

murthy, and D. R. Ports. Building consistent trans-

actions with inconsistent replication. In Proceedings

of the 25th Symposium on Operating Systems Prin-

ciples, pages 263–278. ACM, 2015.

	Introduction
	Invariant Confluence
	Invariant Closure
	Interactive Decision Procedure
	Merge Reduction
	Segmented Invariant Confluence
	Operation Based Invariant Confluence
	Evaluation
	Related Work
	Conclusion

