
Checking Invariant Confluence, In Whole or In Parts

Michael Whittaker
UC Berkeley
Berkeley, CA

mjwhittaker@berkeley.edu

Joseph M. Hellerstein
UC Berkeley
Berkeley, CA

hellerstein@berkeley.edu

ABSTRACT
Strongly consistent distributed systems are easy to reason
about but face fundamental limitations in availability and
performance. Weakly consistent systems can be implemented
with very high performance but place a burden on the ap-
plication developer to reason about complex interleavings
of execution. Invariant confluence provides a formal frame-
work for understanding when we can get the best of both
worlds. An invariant confluent object can be efficiently repli-
cated with no coordination needed to preserve its invariants.
However, actually determining whether or not an object is
invariant confluent is challenging.

In this paper, we establish conditions under which a com-
monly used sufficient condition for invariant confluence is
both necessary and sufficient, and we use this condition to
design a general-purpose interactive invariant confluence de-
cision procedure. We then take a step beyond invariant
confluence and introduce a generalization of invariant con-
fluence, called segmented invariant confluence, that allows
us to replicate non-invariant confluent objects with a small
amount of coordination. We implement these formalisms
in a prototype called Lucy and find that our decision pro-
cedures efficiently handle common real-world workloads in-
cluding foreign keys, escrow transactions, and more.

1. INTRODUCTION
When an application designer decides to replicate a piece

of data, they have to make a fundamental choice between
weak and strong consistency. Replicating the data with
strong consistency using a technique like distributed trans-
actions [7] or state machine replication [14] makes the appli-
cation designer’s life very easy. To the developer, a strongly
consistent system behaves exactly like a single-threaded sys-
tem running on a single node, so reasoning about the be-
havior of the system is simple [12]. Unfortunately, strong
consistency is at odds with performance. The CAP theorem

The original version of this paper is entitled “Interactive
Checks for Coordination Avoidance” and was published in
PVLDB Vol. 12.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
c©VLDB Endowment 2018. This is a minor revision of the pa-

per entitled “Interactive Checks for Coordination Avoidance”, pub-
lished in PVLDB, Vol. 12, No. 1, ISSN 2150-8097. DOI:
https://doi.org/10.14778/3275536.3275538

and PACELC theorem tell us that strongly consistent sys-
tems suffer from higher latency at best and unavailability
at worst [9, 1]. On the other hand, weak consistency mod-
els like eventual consistency [24], PRAM consistency [17],
causal consistency [2], and others [19, 20] allow data to be
replicated with high availability and low latency, but they
put a tremendous burden on the application designer to rea-
son about the complex interleavings of operations that are
allowed by these weak consistency models. In particular,
weak consistency models strip an application developer of
one of the earliest and most effective tools that is used to
reason about the execution of programs: application invari-
ants [13, 5] such as database integrity constraints [11]. Even
if every transaction executing in a weakly consistent system
individually maintains an application invariant, the system
as a whole can produce invariant-violating states.

Is it possible for us to have our strongly consistent cake
and eat it with high availability too? Can we replicate a
piece of data with weak consistency but still ensure that its
invariants are maintained? Yes... sometimes. Bailis et al.
introduced the notion of invariant confluence as a necessary
and sufficient condition for when invariants can be main-
tained over replicated data without the need for any coor-
dination [3]. If an object is invariant confluent with respect
to an invariant, we can replicate it with the performance
benefits of weak consistency and (some of) the correctness
benefits of strong consistency.

Unfortunately, to date, the task of identifying whether or
not an object actually is invariant confluent has remained
an exercise in human proof generation. Bailis et al. man-
ually categorized a set of common objects, transactions,
and invariants (e.g. foreign key constraints on relations, lin-
ear constraints on integers) as invariant confluent or not.
Hand-written proofs of this sort are unreasonable to expect
from programmers. Ideally we would have a general-purpose
program that could automatically determine invariant con-
fluence for us. The first main thrust of this paper
is to make invariant confluence checkable: to design
a general-purpose invariant confluence decision procedure,
and implement it in an interactive system.

Unfortunately, designing such a general-purpose decision
procedure is impossible because determining the invariant
confluence of an object is undecidable in general. Still, we
can develop a decision procedure that works well in the com-
mon case. For example, many prior efforts have developed
decision procedures for invariant closure, a sufficient (but
not necessary) condition for invariant confluence [16, 15].
The existing approaches check whether an object is invari-

ant closed. If it is, then they conclude that it is also invariant
confluent. If it’s not, then the current approaches are un-
able to conclude anything about whether or not the object
is invariant confluent.

In this paper, we take a step back and study the underly-
ing reason why invariant closure is not necessary for invari-
ant confluence. Using this understanding, we construct a
set of modest conditions under which invariant closure and
invariant confluence are in fact equivalent, allowing us to
reduce the problem of determining invariant confluence to
that of determining invariant closure. Then, we use these
conditions to design a general-purpose interactive invariant
confluence decision procedure.

The second main thrust of this paper is to par-
tially avoid coordination even in programs that re-
quire it, by generalizing invariant confluence to a property
called segmented invariant confluence. While invariant con-
fluence characterizes objects that can be replicated without
any coordination, segmented invariant confluence allows us
to replicate non-invariant confluent objects with only occa-
sional coordination. The main idea is to divide the set of
invariant-satisfying states into segments, with a restricted
set of transactions allowed in each segment. Within a seg-
ment, servers act without any coordination; they synchro-
nize only to transition across segment boundaries. This de-
sign highlights the trade-off between application complex-
ity and coordination-freedom; more complex applications
require more segments which require more coordination.

Finally, we present Lucy: an implementation of our deci-
sion procedures and a system for replicating invariant conflu-
ent and segmented invariant confluent objects. Using Lucy,
we find that our decision procedures can efficiently handle
a wide range of common workloads. For example, in Sec-
tion 6, we apply Lucy to foreign key constraints and escrow
transactions. Lucy processes these workloads in less than
half a second, and no workload requires more than 66 lines
of code to specify.

2. INVARIANT CONFLUENCE
Informally, a replicated object is invariant confluent

with respect to an invariant if every replica of the object
is guaranteed to satisfy the invariant despite the possibility
of different replicas being concurrently modified or merged
together [3]. In this section, we make this informal notion
of invariant confluence precise.

We begin by introducing our system model of replicated
objects in which a distributed object and an invariant are
replicated across a set of servers. Clients send transactions
to servers, and servers execute transactions so long as they
maintain the invariant. Servers execute transactions without
coordination, but to avoid state divergence, servers periodi-
cally gossip with one another and merge their replicas.

2.1 System Model
A distributed object O = (S,t) consists of a set S of

states and a binary merge operator t : S × S → S that
merges two states into one. A transaction t : S → S is a
function that maps one state to another. An invariant I is
a subset of S. Notationally, we write I(s) to denote that s
satisfies the invariant (i.e. s ∈ I) and ¬I(s) to denote that
s does not satisfy the invariant (i.e. s /∈ I).

Example 1. O = (Z,max) is a distributed object consisting
of integers merged by the max function; t(x) = x + 1 is a
transaction that adds one to a state; and {x ∈ Z |x ≥ 0} is
the invariant that states x are non-negative.

In our system model, a distributed object O is replicated
across a set p1, . . . , pn of n servers. Each server pi manages
a replica si ∈ S of the object. Every server begins with
a start state s0 ∈ S, a fixed set T of transactions, and an
invariant I. Servers repeatedly perform one of two actions.

First, a client can contact a server pi and request that
it execute a transaction t ∈ T . pi speculatively executes t,
transitioning from state si to state t(si). If t(si) satisfies
the invariant—i.e. I(t(si))—then pi commits the transac-
tion and remains in state t(si). Otherwise, pi aborts the
transaction and reverts to state si.

Second, a server pi can send its state si to another server
pj with state sj causing pj to transition from state sj to
state si t sj . Servers periodically merge states with one
another in order to keep their states loosely synchronized.
Note that unlike with transactions, servers cannot abort a
merge; server pj must transition from sj to si t sj whether
or not si t sj satisfies the invariant.

Informally, O is invariant confluent with respect to s0,
T , and I, abbreviated (s0, T, I)-confluent, if every replica
s1, . . . , sn is guaranteed to always satisfy the invariant I in
every possible execution of the system.

2.2 Expression-Based Formalism
To define invariant confluence formally, we represent a

state produced by a system execution as a simple expression
generated by the grammar

e ::= s | t(e) | e1 t e2

where s represents a state in S and t represents a transac-
tion in T . As an example, consider the system execution in
Figure 1a in which a distributed object is replicated across
servers p1, p2, and p3. Server p3 begins with state s0, tran-
sitions to state s2 by executing transaction u, transitions to
state s5 by executing transaction w, and then transitions to
state s7 by merging with server p1. Similarly, server p1 ends
up with state s6 after executing transactions t and v and
merging with server p2. In Figure 1b, we see the abstract
syntax tree of the corresponding expression for state s7.

p1

p2

p3

s0 s1 s3 s6

s0 s2 s4

s0 s2 s5 s7

t v

u

u w

(a) System Execution

t
s7

w
s5

t
s6

u
s2

s0

v
s3

t
s1

s0

t
s4

t
s1

s0

u
s2

s0

(b) Expression
Figure 1: A system execution and corresponding
expression

We say an expression e is (s0, T, I)-reachable if it corre-
sponds to a valid execution of our system model. Formally,
we define reachable(s0,T,I)(e) to be the predicate that satis-
fies the following conditions:

• reachable(s0,T,I)(s0).

• For all expressions e and for all transactions t in the
set T of transactions, if reachable(s0,T,I)(e) and I(t(e)),
then reachable(s0,T,I)(t(e)).

• For expressions e1 and e2, if reachable(s0,T,I)(e1) and
reachable(s0,T,I)(e2), then reachable(s0,T,I)(e1 t e2).

Similarly, we say a state s ∈ S is (s0, T, I)-reachable if
there exists an (s0, T, I)-reachable expression e that evalu-
ates to s. Returning to Example 1 with start state s0 = 42,
we see that all integers greater than or equal to 42 (i.e.
{x ∈ Z |x ≥ 42}) are (s0, T, I)-reachable, and all other inte-
gers are (s0, T, I)-unreachable.

Finally, we say O is invariant confluent with respect to
s0, T , and I, abbreviated (s0, T, I)-confluent, if all reach-
able states satisfy the invariant:

{s ∈ S | reachable(s0,T,I)(s)} ⊆ I

3. INVARIANT CLOSURE
Our ultimate goal is to write a program that can auto-

matically decide whether a given distributed object O is
(s0, T, I)-confluent. Such a program has to automatically
prove or disprove that every reachable state satisfies the in-
variant. However, automatically reasoning about the possi-
bly infinite set of reachable states is challenging, especially
because transactions and merge functions can be complex
and can be interleaved arbitrarily in an execution. Due to
this complexity, existing systems that aim to automatically
decide invariant confluence instead focus on deciding a suf-
ficient condition for invariant confluence—dubbed invari-
ant closure—that is simpler to reason about [16, 15]. In
this section, we define invariant closure and study why the
condition is sufficient but not necessary. Armed with this
understanding, we present conditions under which it is both
sufficient and necessary.

We say an object O = (S,t) is invariant closed with
respect to an invariant I, abbreviated I-closed, if invariant
satisfying states are closed under merge. That is, for every
state s1, s2 ∈ S, if I(s1) and I(s2), then I(s1 t s2).

Theorem 1. Given an object O = (S,t), a start state s0 ∈
S, a set of transactions T , and an invariant I, if I(s0) and
if O is I-closed, then O is (s0, T, I)-confluent.

Theorem 1 states that invariant closure is sufficient for
invariant confluence. Intuitively, our system model ensures
that transaction execution preserves the invariant, so if merg-
ing states also preserves the invariant and if our start state
satisfies the invariant, then inductively it is impossible for
us to reach a state that doesn’t satisfy the invariant.

This is good news because checking if an object is invariant
closed is more straightforward than checking if it is invariant
confluent. Existing systems typically use an SMT solver like
Z3 to check if an object is invariant closed [8, 4, 10]. If it is,
then by Theorem 1, it is invariant confluent. Unfortunately,
invariant closure is not necessary for invariant confluence,
so if an object is not invariant closed, these systems cannot
conclude that the object is not invariant confluent. The
reason why invariant closure is not necessary for invariant
confluence is best explained through an example.

x

y

s0

s1

s2

s3

(a) Invariant

x

y

s0

s1

s2

s3

(b) Reachable points
Figure 2: An illustration of Example 2

Example 2. Let O = (Z×Z,t) consist of pairs (x, y) of in-
tegers where (x1, y1)t (x2, y2) = (max(x1, x2),max(y1, y2)).
Our start state s0 ∈ Z×Z is (0, 0). Our set T of transactions
consists of two transactions: tx+1((x, y)) = (x + 1, y) which
increments x and ty−1((x, y)) = (x, y− 1) which decrements
y. Our invariant I = {(x, y) ∈ Z×Z |xy ≤ 0} consists of all
points (x, y) where the product of x and y is non-positive.

The invariant and the set of reachable states are illus-
trated in Figure 2 in which we draw each state (x, y) as a
point in space. The invariant consists of the second and
fourth quadrant, while the reachable states consist only of
the fourth quadrant. From this, it is immediate that the
reachable states are a subset of the invariant, so O is in-
variant confluent. However, letting s1 = (−1, 1) and s2 =
(1,−1), we see that O is not invariant closed. I(s1) and
I(s2), but letting s3 = s1 t s2 = (1, 1), we see ¬I(s3).

In Example 2, s1 and s2 witness the fact that O is not
invariant closed, but s1 is not reachable. This is not partic-
ular to Example 2. In fact, it is fundamentally the reason
why invariant closure is not equivalent to invariant conflu-
ence. Invariant confluence is, at its core, a property of reach-
able states, but invariant closure is completely ignorant of
reachability. As a result, invariant-satisfying yet unreach-
able states like s1 are the key hurdle preventing invariant
closure from being equivalent to invariant confluence. This
is formalized by Theorem 2.

Theorem 2. Consider an object O = (S,t), a start state
s0 ∈ S, a set of transactions T , and an invariant I. If the
invariant is a subset of the reachable states (i.e. I ⊆ {s ∈
S | reachable(s0,T,I)(s)}), then

(I(s0) and O is I-closed) ⇐⇒ O is (s0, T, I)-confluent

The forward direction of Theorem 2 follows immediately
from Theorem 1. The backward direction holds because any
two invariant satisfying states s1 and s2 must be reachable
(by assumption), so their join s1 t s2 is also reachable. And
because O is (s0, T, I)-confluent, all reachable points, includ-
ing s1 t s2, satisfy the invariant.

4. INTERACTIVE DECISION PROCEDURE
Theorem 2 tells us that if all invariant satisfying points are

reachable, then invariant closure and invariant confluence
are equivalent. In this section, we present the interactive in-
variant confluence decision procedure shown in Algorithm 1,
that takes advantage of this result.

A user provides Algorithm 1 with an object O = (S,t),
a start state s0, a set of transactions T , and an invariant I.
The user then interacts with Algorithm 1 to iteratively elim-
inate unreachable states from the invariant. Meanwhile, the
algorithm leverages an invariant closure decision procedure
to either (a) conclude that O is or is not (s0, T, I)-confluent

Algorithm 1 Interactive invariant confluence decision pro-
cedure

// Return if O is (s0, T, I)-confluent.
function IsInvConfluent(O, s0, T , I)

return I(s0) and Helper(O, s0, T , I, {s0}, ∅)

// R is a set of (s0, T, I)-reachable states.
// NR is a set of (s0, T, I)-unreachable states.
// I(s0) is a precondition.
function Helper(O, s0, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I −NR)
if closed then return true
Augment R,NR with random search and user input
if s1, s2 ∈ R then return false

return Helper(O, s0, T , I, R, NR)

or (b) provide counterexamples to the user to help them
eliminate unreachable states. After all unreachable states
have been eliminated from the invariant, Theorem 2 allows
us to reduce the problem of invariant confluence directly to
the problem of invariant closure, and the algorithm termi-
nates. We now describe Algorithm 1 in detail. An example
of how to use Algorithm 1 on Example 2 is given in Figure 3.

IsInvConfluent assumes access to an invariant closure
decision procedure IsIclosed(O, I). IsIclosed(O, I) re-
turns a triple (closed, s1, s2). closed is a boolean indicating
whether O is I-closed. If closed is true, then s1 and s2 are
null. Otherwise, s1 and s2 are a counterexample witnessing
the fact that O is not I-closed. That is, I(s1) and I(s2),
but ¬I(s1 t s2) (e.g., s1 and s2 from Example 2). As we
mentioned earlier, we can (and do) implement the invariant
closure decision procedure using an SMT solver like Z3 [8].
IsInvConfluent first checks that s0 satisfies the invari-

ant. s0 is reachable, so if it does not satisfy the invari-
ant, then O is not (s0, T, I)-confluent and IsInvConfluent
returns false. Otherwise, IsInvConfluent calls a helper
function Helper that—in addition to O, s0, T , and I—
takes as arguments a set R of (s0, T, I)-reachable states and
a set NR of (s0, T, I)-unreachable states. Like IsInvCon-
fluent, Helper(O, s0, T, I, R,NR) returns whether O is
(s0, T, I)-confluent (assuming R and NR are correct). As
Algorithm 1 executes, NR is iteratively increased, which
removes unreachable states from I until I is a subset of
{s ∈ S | reachable(s0,T,I)(s)}.

First, Helper checks to see if O is (I − NR)-closed. If
IsIclosed determines that O is (I − NR)-closed, then by
Theorem 1, O is (s0, T, I −NR)-confluent, so

{s ∈ S | reachable(s0,T,I−NR)(s)} ⊆ I −NR ⊆ I

Because NR only contains (s0, T, I)-unreachable states, then
the set of (s0, T, I)-reachable states is equal to set of (s0, T, I−
NR)-reachable states which, as we just showed, is a subset
of I. Thus, O is (s0, T, I)-confluent, so Helper returns true.

If IsIclosed determines that O is not (I − NR)-closed,
then we have a counterexample s1, s2. We want to determine
whether s1 and s2 are reachable or unreachable. We can do
so in two ways. First, we can randomly generate a set of
reachable states and add them to R. If s1 or s2 is in R, then
they are reachable. Second, we can prompt the user to tell
us directly whether the states are reachable or unreachable.

In addition to labelling s1 and s2 as reachable or unreach-

able, the user can also refine I by augmenting R and NR
arbitrarily (see Figure 3 for example). In this step, we also
make sure that s0 /∈ NR since we know that s0 is reachable.

After s1 and s2 have been labelled as (s0, T, I)-reachable
or not, we continue. If both s1 and s2 are (s0, T, I)-reachable,
then so is s1 t s2, but ¬I(s1 t s2). Thus, O is not (s0, T, I)-
confluent, so Helper returns false. Otherwise, one of s1 and
s2 is (s0, T, I)-unreachable, so we recurse.

Helper recurses only when one of s1 or s2 is unreachable,
so NR grows after every recursive invocation of Helper.
Similarly, R continues to grow as Helper randomly explores
the set of reachable states. As the user sees more and more
examples of unreachable and reachable states, it often be-
comes easier and easier for them to recognize patterns that
define which states are reachable and which are not. As
a result, it becomes easier for a user to augment NR and
eliminate a large number of unreachable states from the in-
variant. See Figure 3, for example. Once NR has been
sufficiently augmented to the point that I − NR is a sub-
set of the reachable states, Theorem 2 guarantees that the
algorithm will terminate after one more call to IsIclosed.

5. SEGMENTED INVARIANT CONFLUENCE
If a distributed object is invariant confluent, then the ob-

ject can be replicated without the need for any form of coor-
dination to maintain the object’s invariant. But what if the
object is not invariant confluent? In this section, we present
a generalization of invariant confluence called segmented
invariant confluence that can be used to maintain the in-
variants of non-invariant confluent objects, requiring only a
small amount of coordination.

The main idea behind segmented invariant confluence is
to segment the state space into a number of segments and
restrict the set of allowable transactions within each segment
in such a way that the object is invariant confluent within
each segment (even though it may not be globally invariant
confluent). Then, servers can run coordination-free within a
segment and need only coordinate when transitioning from
one segment to another. We now formalize segmented invari-
ant confluence, describe the system model we use to repli-
cate segmented invariant confluent objects, and introduce a
segmented invariant confluence decision procedure.

5.1 Formalism
Consider a distributed object O = (S,t), a start state

s0 ∈ S, a set of transitions T , and an invariant I. A segmen-
tation Σ = (I1, T1), . . . , (In, Tn) is a sequence of n segments
(Ii, Ti) where every Ti is a subset of T and every Ii ⊆ S
is an invariant. Note that Σ is a sequence, not a set. The
reason for this will become clear in the next subsection. O is
segmented invariant confluent with respect to s0, T , I,
and Σ, abbreviated (s0, T, I,Σ)-confluent, if the following
conditions hold:

• The start state satisfies the invariant (i.e. I(s0)).

• I is covered by the invariants in Σ (i.e. I = ∪n
i=1Ii).

Note that invariants in Σ do not have to be disjoint.
That is, they do not have to partition I; they just have
to cover I.

• O is invariant confluent within each segment. That is,
for every (Ii, Ti) ∈ Σ and for every state s ∈ Ii, O is
(s, Ti, Ii)-confluent.

R NR I −NR

(a) IsInvConfluent determines I(s0) and
then calls Helper with R = {s0}, NR = ∅,
and I = {(x, y) |xy ≤ 0}.

R NR I −NR

(b) Helper determines that O is not (I −NR)-closed with coun-
terexample s1 = (−1, 1) and s2 = (1,−1). Helper randomly gener-
ates some (s0, T, I)-reachable points and adds them to R. Luck-
ily for us, s2 ∈ R, so Helper knows that it is (s0, T, I)-reachable.
Helper is not sure about s1, so it asks the user. After some
thought, the user tells Helper that s1 is (s0, T, I)-unreachable,
so Helper adds s1 to NR and then recurses.

R NR I −NR

(c) Helper determines that O is not
(I −NR)-closed with counterexample s1 =
(−1, 2) and s2 = (3,−3). Helper randomly
generates some (s0, T, I)-reachable points
and adds them to R. s1, s2 /∈ R,NR, so
Helper ask the user to label them. The
user puts s1 in NR and s2 in R. Then,
Helper recurses.

R NR I −NR

(d) Helper determines that O is not (I −NR)-closed with coun-
terexample s1 = (−2, 1) and s2 = (1,−1). Helper randomly gener-
ates some (s0, T, I)-reachable points and adds them to R. s2 ∈ R
but s1 /∈ R,NR, so Helper asks the user to label s1. The user
notices a pattern in R and NR and after some thought, con-
cludes that every point with negative x-coordinate is (s0, T, I)-
unreachable. They update NR to −Z×Z. Then, Helper recurses.
Helper determines that O is (I −NR)-closed and returns true!

Figure 3: An example of a user interacting with Algorithm 1 on Example 2. Each step of the visualization
shows reachable states R (left), non-reachable states NR (middle), and the refined invariant I −NR (right) as
the algorithm executes.

Example 3. Consider again the object O = (Z × Z,t),
transactions T = {tx+1, ty−1}, and invariant I = {(x, y) |xy ≤
0} from Example 2, but now let the start state s0 be (−42, 42).
O is not (s0, T, I)-confluent because the points (0, 42) and
(42, 0) are reachable, and merging these points yields (42, 42)
which violates the invariant. However, O is (s0, T, I,Σ)-
confluent for Σ = (I1, T1), (I2, T2), (I3, T3), (I4, T4) where

I1 = {(x, y) |x < 0, y > 0} T1 = {tx+1, ty−1}
I2 = {(x, y) |x ≥ 0, y ≤ 0} T2 = {tx+1, ty−1}
I3 = {(x, y) |x = 0} T3 = {ty−1}
I4 = {(x, y) | y = 0} T4 = {tx+1}

Σ is illustrated in Figure 4. Clearly, s0 satisfies the invariant,
and I1, I2, I3, I4 cover I. Moreover, for every (Ii, Ti) ∈ Σ, we
see that O is Ii-closed, so O is (s, Ti, II)-confluent for every
s ∈ Ii. Thus, O is (s0, T, I,Σ)-confluent.

(a) (I1, T1). (b) (I2, T2). (c) (I3, T3). (d) (I4, T4).
Figure 4: An illustration of Example 3

5.2 System Model
Now, we describe the system model used to replicate a

segmented invariant confluent object without any coordi-

nation within a segment and with only a small amount of
coordination when transitioning between segments. As be-
fore, we replicate an object O across a set p1, . . . , pn of n
servers each of which manages a replica si ∈ S of the object.
Every server begins with s0, T , I, and Σ. Moreover, at any
given point in time, a server designates one of the segments
in Σ as its active segment. Initially, every server chooses
the first segment (Ii, Ti) ∈ Σ such that Ii(s0) to be its ac-
tive segment. We’ll see momentarily the significance of the
active segment.

As before, servers repeatedly perform one of two actions:
execute a transaction or merge states with another server.
Merging states in the segmented invariant confluence system
model is identical to merging states in the invariant conflu-
ence system model. A server pi sends its state si to another
server pj which must merge si into its state sj . Transac-
tion execution in the new system model, on the other hand,
is more involved. Consider a server si with active segment
(Ii, Ti). A client can request that pi execute a transaction
t. We consider what happens when t ∈ Ti and when t /∈ Ti.

If t /∈ Ti, then pi initiates a round of global coordina-
tion to execute t. During global coordination, every server
temporarily stops processing transactions and transitions to
state s = s1t . . .tsn, the join of every server’s state. Then,
every server speculatively executes t transitioning to state
t(s). If t(s) violates the invariant (i.e. ¬I(t(s))), then every
server aborts t and reverts to state s. Then, pi replies to the
client. If t(s) satisfies the invariant (i.e. I(t(s))), then every
server commits t and remains in state t(s). Every server

then chooses the first segment (Ii, Ti) ∈ Σ such that Ii(t(s))
to be the new active segment. Note that such a segment is
guaranteed to exist because the segment invariants cover I.
Moreover, Σ is ordered, as described in the previous sub-
section, so every server will deterministically pick the same
active segment. In fact, an invariant of the system model is
that at any given point of normal processing, every server
has the same active segment.

Otherwise, if t ∈ Ti, then pi executes t immediately and
without coordination. If t(si) satisfies the active invariant
(i.e. Ii(t(si))), then pi commits t, stays in state t(si), and
replies to the client. If t(si) violates the global invariant (i.e.
¬I(t(si))), then pi aborts t, reverts to state si, and replies to
the client. If t(si) satisfies the global invariant but violates
the active invariant (i.e. I(t(si)) but ¬Ii(t(si))), then pi re-
verts to state si and initiates a round of global coordination
to execute t, as described in the previous paragraph.

This system model guarantees that all replicas of a seg-
mented invariant confluent object always satisfy the invari-
ant. All servers begin in the same initial state and with
the same active segment. Thus, because O is invariant con-
fluent with respect to every segment, servers can execute
transactions within the active segment without any coordi-
nation and guarantee that the invariant is never violated.
Any operation that would violate the assumptions of the
invariant confluence system model (e.g. executing a transac-
tion that’s not permitted in the active segment or executing
a permitted transaction that leads to a state outside the
active segment) triggers a global coordination. Globally co-
ordinated transactions are only executed if they maintain
the invariant. Moreover, if a globally coordinated transac-
tion leads to another segment, the coordination ensures that
all servers begin in the same start state and with the same
active segment, reestablishing the assumptions of the invari-
ant confluence system model.

5.3 Interactive Decision Procedure
In order for us to determine whether or not an object O

is (s0, T, I,Σ)-confluent, we have to determine whether or
not O is invariant confluent within each segment (Ii, Ti) ∈
Σ. That is, we have determine if O is (s, Ti, Ii)-confluent
confluent for every state s ∈ Ii. Ideally, we could leverage
Algorithm 1, invoking it once per segment. Unfortunately,
Algorithm 1 can only be used to determine if O is (s, Ti, Ii)-
confluent for a particular state s ∈ Ii, not for every state
s ∈ Ii. Thus, we would have to invoke Algorithm 1 |Ii| times
for every segment (Ii, Ti), which is clearly infeasible given
that Ii can be large or even infinite.

Instead, we develop a new decision procedure that can be
used to determine if an object is (s, T, I)-confluent for ev-
ery state s ∈ I. To do so, we need to extend the notion
of reachability to a notion of coreachability and then gen-
eralize Theorem 2. Two states s1, s2 ∈ I are coreachable
with respect to a set of transactions T and an invariant I,
abbreviated (T, I)-coreachable, if there exists some state
s0 ∈ I such that s1 and s2 are both (s0, T, I)-reachable.

Theorem 3. Consider an object O = (S,t), a set of trans-
actions T , and an invariant I. If every pair of states in the
invariant are (T, I)-coreachable, then

O is I-closed ⇐⇒ O is (s, T, I)-confluent for every s ∈ I

The proof of the forward direction is exactly the same
as the proof of Theorem 1. Transactions always maintain

Algorithm 2 Interactive invariant confluence decision pro-
cedure for arbitrary start state s ∈ I

// Return if O is (s, T, I)-confluent for every s ∈ I.
function IsInvConfluent(O, T , I)

return Helper(O, T , I, ∅, ∅)

// R is a set of (T, I)-coreachable states.
// NR is a set of (T, I)-counreachable states.
function Helper(O, T , I, R, NR)

closed, s1, s2 ← IsIclosed(O, I, NR)
if closed then return true
Augment R,NR with random search and user input
if (s1, s2) ∈ R then return false

return Helper(O, T , I, R, NR)

the invariant, so if merge does as well, then every reachable
state must satisfy the invariant. For the reverse direction,
consider two arbitrary states s1, s2 ∈ I. The two points are
(T, I)-coreachable, so there exists some state s0 from which
they can be reached. O is (s0, T, I)-confluent and s1 t s2 is
(s0, T, I)-reachable, so it satisfies the invariant.

Using Theorem 3, we develop Algorithm 2: a natural gen-
eralization of Algorithm 1. Algorithm 1 iteratively refines
the set of reachable states whereas Algorithm 2 iteratively
refines the set of coreachable states, but otherwise, the core
of the two algorithms is the same. Now, a segmented invari-
ant confluence decision procedure, can simply invoke Algo-
rithm 2 once on each segment.

Example 4. Let O = (Z3 × Z3,t) be an object that sep-
arately keeps positive and negative integer counts (dubbed
a PN-Counter [23]), replicated on three machines. Every
state s = (p1, p2, p3), (n1, n2, n3) represents the integer (p1+
p2 + p3) − (n1 + n2 + n3). To increment or decrement the
counter, the ith server increments pi or ni respectively, and
t computes an element-wise maximum. Our start state
s0 = (0, 0, 0), (0, 0, 0); our set T of transactions consists of
increment and decrement; and our invariant I is that the
value of s is non-negative.

Applying Algorithm 1, IsIclosed returns false with the
states s1 = (1, 0, 0), (0, 1, 0) and s2 = (1, 0, 0), (0, 0, 1). Both
are reachable, so O is not (s0, T, I)-confluent and Algorithm 1
returns false. The culprit is concurrent decrements, which
we can forbid in a simple one-segment segmentation Σ =
(I, T+) where T+ consists only of increment transactions.
Applying Algorithm 2, IsIclosed again returns false with
the same states s1 and s2. This time, however, the user
recognizes that the two states are not (T+, I)-coreachable.
The user refines NR with the observation that two states
are coreachable if and only if they have the same values of
n1, n2, n3. After this, IsIclosed (and thus Helper) returns
true, and Algorithm 2 terminates.

6. EVALUATION
In this section, we describe and evaluate Lucy: a pro-

totype implementation of our decision procedures and sys-
tem models. A more complete evaluation can be found in
[25]. Lucy includes a Python implementation of the inter-
active decision procedures described in Algorithm 1 and Al-
gorithm 2. Users specify objects, transactions, invariants,
and segmentations in Python. Lucy also includes a C++

implementation of the invariant confluence and segmented
invariant confluence system models.

We now evaluate the practicality and efficiency of our de-
cision procedure prototypes. Specifically, we show that spec-
ifying objects is not too onerous and that our decision pro-
cedures’ latencies are small enough to be used comfortably
in an interactive way [18].

Example 5 (Foreign Keys). A 2P-Set X = (AX , RX) is a
set CRDT composed of a set of additions AX and a set of
removals RX [23]. We view the state of the set X as the
difference AX − RX of the addition and removal sets. To
add an element x to the set, we add x to AX . Similarly,
to remove x from the set, we add it to RX . The merge of
two 2P-sets is a pairwise union (i.e. (AX , RX)t (AY , RY) =
(AX ∪AY , RX ∪RY)).

We can use 2P-sets to model a simple relational database
with foreign key constraints. Let object O = (X,Y) =
((AX , RX), (AY , RY)) consist of a pair of two 2P-Sets X
and Y , which we view as relations. Our invariant X ⊆ Y
(i.e. (AX − RX) ⊆ (AY − RY)) models a foreign key con-
straint from X to Y . We ran our decision procedure on
the object with initial state ((∅, ∅), (∅, ∅)) and with trans-
actions that allow arbitrary insertions and deletions into X
and Y . After less than a tenth of a second, the decision
procedure produced a reachable counterexample witnessing
the fact that the object is not invariant confluent. A con-
current insertion into X and deletion from Y can lead to a
state that violates the invariant. This object is not invariant
confluent and therefore not invariant closed. Thus, existing
systems that depend on invariant closure as a sufficient con-
dition are unable to conclude definitively that the object is
not invariant confluent.

We also reran the decision procedure, but this time with
insertions into X and deletions from Y disallowed. In less
than a tenth of a second, the decision procedure correctly
deduced that the object is now invariant confluent. These
results were manually proven in [3], but our tool was able to
confirm them automatically in a negligible amount of time.

Example 6 (Escrow Transactions). Escrow transactions
are a concurrency control technique that allows a database
to execute transactions that increment and decrement nu-
meric values with more concurrency than is otherwise pos-
sible with general-purpose techniques like two-phase lock-
ing [21]. The main idea is that a portion of the numeric
value is put in escrow, after which a transaction can freely
decrement the value so long as it is not decremented by more
than the amount that has been escrowed. We show how
segmented invariant confluence can be used to implement
escrow transactions.

Consider again the PN-Counter s = (p1, p2, p3), (n1, n2, n3)
from Example 4 replicated on three servers with transac-
tions to increment and decrement the PN-Counter. In Ex-
ample 4, we found that concurrent decrements violate in-
variant confluence which led us to a segmentation which
prohibited concurrent decrements. We now propose a new
segmentation with escrow amount k that will allow us to per-
form concurrent decrements that respect the escrowed value.
The first segment ({(p1, p2, p3), (n1, n2, n3) | p1, p2, p3 ≥ k ∧
n1, n2, n3 ≤ k}, T) allows for concurrent increments and
decrements so long as every pi ≥ k and every ni ≤ k. Intu-
itively, this segment represents the situation in which every
server has escrowed a value of k. Each server can decrement

freely, so long as they don’t exceed their escrow budget of
k. The second segment is the one presented in Example 4
which prohibits concurrent decrements. We ran our decision
procedure on this example and it concluded that it was seg-
mented invariant confluent in less than a tenth of a second
and without any human interaction.

Further Decision Procedure Evaluation. In [25], we
also specify workloads involving Example 1, an auction ap-
plication, and TPC-C. Lucy processes all of these workloads,
as well as the workloads described above, in less than half
a second, and no workload requires more than 66 lines of
Python code to specify. This shows that the user burden of
specification is not too high and that our decision procedures
are efficient enough for interactive use.

System Model Evaluation. In addition to our decision
procedures, we also evaluate the performance of distributed
objects deployed with segmented invariant confluence [25].
Namely, we show that segmented invariant confluent repli-
cation can achieve an order of magnitude higher through-
put compared to linearizable replication, but the through-
put improvements decrease as we increase the fraction of
transactions that require coordination. For example, with
5% coordinating transactions, segmented invariant conflu-
ent replication performs over an order of magnitude better
than linearizable replication; with 50%, it performs as well;
and with 100%, it performs two times worse.

7. RELATED WORK
RedBlue consistency [16], is a consistency model that sits

between causal consistency and linearizability. In [16], Li
et al. introduce invariant safety as a sufficient (but not nec-
essary) condition for RedBlue consistent objects to be in-
variant confluent. Invariant safety is an analog of invariant
closure. In [15], Li et al. develop sophisticated techniques
for deciding invariant safety that involve calculating weak-
est preconditions. These techniques are complementary to
our work and can be used to improve the invariant closure
subroutine used by our decision procedures.

The homeostasis protocol [22], a generalization of the de-
marcation protocol [6], uses program analysis to avoid un-
necessary coordination between servers in a sharded database
(whereas invariant confluence targets replicated databases).

Explicit consistency [5] is a consistency model that com-
bines invariant confluence and causal consistency, similar
to RedBlue consistency with invariant safety. Balegas et al.
also describe a variety of techniques—like conflict resolution,
locking, and escrow transactions [21]—that can be used to
replicate workloads that do not meet their sufficient condi-
tions. Segmented invariant confluence is a formalism that
can be used to model simple forms of these techniques.

In [10], Gotsman et al. discuss a hybrid token based con-
sistency model that generalizes a family of consistency mod-
els including causal consistency, sequential consistency, and
RedBlue consistency. The token based approach allows users
to specify certain conflicts that are not possible with seg-
mented invariant confluence. However, segmented invariant
confluence also introduces the notion of invariant segmen-
tation, which cannot be emulated with the token based ap-
proach. For example, it is difficult to emulate escrow trans-
actions with the token based approach.

8. CONCLUSION
This paper revolved around two major contributions. First,

we found that invariant closure fails to incorporate a no-
tion of reachability, and using this intuition, we developed
conditions under which invariant closure and invariant con-
fluence are equivalent. We implemented this insight in an
interactive invariant confluence decision procedure that au-
tomatically checks whether an object is invariant confluent,
with the assistance of a programmer. Second, we proposed
a generalization of invariant confluence, segmented invari-
ant confluence, that can be used to replicate non-invariant
confluent objects with a small amount of coordination while
still preserving their invariants.

9. ACKNOWLEDGMENTS
A big thanks to Alan Fekete, Peter Alvaro, Alvin Che-

ung, Alexandra Meliou, Anthony Tan, and Cristina Teodor-
opol. This research is supported in part by DHS Award
HSHQDC-16-3-00083, NSF CISE Expeditions Award CCF-
1139158, and gifts from Alibaba, Amazon Web Services, Ant
Financial, CapitalOne, Ericsson, GE, Google, Huawei, Intel,
IBM, Microsoft, Scotiabank, Splunk and VMware.

10. REFERENCES
[1] D. Abadi. Consistency tradeoffs in modern distributed

database system design: Cap is only part of the story.
Computer, 45(2):37–42, 2012.

[2] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and
P. W. Hutto. Causal memory: Definitions,
implementation, and programming. Distributed
Computing, 9(1):37–49, 1995.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in
database systems. PVLDB, 8(3):185–196, 2014.

[4] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues,
N. Preguiça, M. Najafzadeh, and M. Shapiro. Putting
consistency back into eventual consistency. In
Proceedings of the Tenth European Conference on
Computer Systems. ACM, 2015.

[5] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues,
N. Preguiça, M. Najafzadeh, and M. Shapiro. Towards
fast invariant preservation in geo-replicated systems.
ACM SIGOPS Operating Systems Review,
49(1):121–125, 2015.

[6] D. Barbará-Millá and H. Garcia-Molina. The
demarcation protocol: A technique for maintaining
constraints in distributed database systems. The
VLDB Journal, 3(3):325–353, 1994.

[7] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM
Computing Surveys (CSUR), 13(2):185–221, 1981.

[8] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In International conference on Tools and
Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[9] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2):51–59, 2002.

[10] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh,
and M. Shapiro. ’cause i’m strong enough: Reasoning
about consistency choices in distributed systems.
ACM SIGPLAN Notices, 51(1):371–384, 2016.

[11] P. W. Grefen and P. M. Apers. Integrity control in

relational database systemsâĂŤan overview. Data &
Knowledge Engineering, 10(2):187–223, 1993.

[12] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[13] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580, 1969.

[14] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[15] C. Li, J. Leitão, A. Clement, N. Preguiça,
R. Rodrigues, and V. Vafeiadis. Automating the
choice of consistency levels in replicated systems. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 281–292, 2014.

[16] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça,
and R. Rodrigues. Making geo-replicated systems fast
as possible, consistent when necessary. In Presented as
part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages
265–278, 2012.

[17] R. J. Lipton and J. S. Sandberg. Pram: A scalable
shared memory. Technical Report TR-180-88,
Computer Science Department, Princeton University,
August 1988.

[18] Z. Liu and J. Heer. The effects of interactive latency
on exploratory visual analysis. IEEE transactions on
visualization and computer graphics,
20(12):2122–2131, 2014.

[19] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: scalable causal
consistency for wide-area storage with cops. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 401–416. ACM,
2011.

[20] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi,
N. Bronson, and W. Lloyd. I can’t believe it’s not
causal! scalable causal consistency with no slowdown
cascades. In NSDI, pages 453–468, 2017.

[21] P. E. O’Neil. The escrow transactional method. ACM
Transactions on Database Systems (TODS),
11(4):405–430, 1986.

[22] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat,
C. Koch, N. Foster, and J. Gehrke. The homeostasis
protocol: Avoiding transaction coordination through
program analysis. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 1311–1326. ACM, 2015.

[23] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. A comprehensive study of convergent and
commutative replicated data types. PhD thesis,
Inria–Centre Paris-Rocquencourt; INRIA, 2011.

[24] W. Vogels. Eventually consistent. Communications of
the ACM, 52(1):40–44, 2009.

[25] M. Whittaker and J. M. Hellerstein. Interactive checks
for coordination avoidance. Proceedings of the VLDB
Endowment, 12(1):14–27, 2018.

