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ABSTRACT

Software rollout is the process of replacing the version of an appli-

cation that is currently running in production with a new version.

Many subtle and catastrophic bugs occur during software rollout.

There are many existing techniques to improve the odds of a roll-

out completing successfully, but these techniques don’t work well

when the application has shared, persistent, mutable state. In this

paper, we present a practical framework to test the rollout of state-

ful applications. Our framework uses diff testing to verify that the

new version of an application behaves identically to the currently

running version that will be replaced. The framework has three

main components to safely and efficiently compare the behavior of

the two versions. First, we implement database branching on top of

Postgres. Second, we implement an efficient algorithm to diff two

database branches. Third, we describe how to replay client requests

to improve test coverage. Finally, we identify three common cat-

egories of rollout bugs and demonstrate how our framework can

find these bugs with minimal performance overhead.
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1 INTRODUCTION

Software rollout is the process of replacing the version of a system

that is currently running in production with a new version, without

disrupting the serving of live production traffic. Software rollout is

an error-prone process that forces you to anticipate, reason about,

and test all possible interactions between the old and new ver-

sions of your system. Rolling out stateful systemsÐi.e. systems with

shared, persistent, mutable stateÐis even more complex because of

the state that persists across versions.

Unsurprisingly, many bugs occur during the rollout of state-

ful systems [32]. Based on our analysis of bugs reported within
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Google, we found that stateful rollout bugs can impact many ser-

vices, require significant time and effort to mitigate, and can lead

to substantial revenue loss.

Existing rollout and testing techniques struggle to detect and

mitigate these bugs. Canarying [2], rolling updates [26], and blue/-

green deployment [12] are widely used techniques that gradually

deploy a new software version to a subset of users to limit the blast

radius in case the new version is buggy. However, these techniques

don’t work as well when applied to stateful systems. Because of

shared state, a bug in one application version can easily snowball

into a bug across all versions, leading to a large bug blast radius.

Standard testing techniques like unit tests, end-to-end tests, and

integration tests are effective at catching bugs in a single applica-

tion version, but they don’t typically test the interactions between

multiple software versions that occur during a rollout.

In this paper, we present a framework for testing the rollout

of stateful applications. Concretely, our framework implements

a version of traditional diff testing [28] that is generalized to test

stateful applications that interact during a software rollout. Before

rolling out a new version of a system 𝑣2 to replace the version 𝑣1
that is currently running in production, our framework executes a

number of client requests against both 𝑣1 and 𝑣2 to ensure that there

are no unexpected differences in their behavior. To accomplish this,

our framework solves the following technical challenges.

C1: How do we compare the two versions, 𝑣1 and 𝑣2, on pro-

duction data without harming the production deployment?

C2: How do we test the subtle interactions that occur between

𝑣1 and 𝑣2 when requests are interleaved between both ver-

sions during a rollout?

C3: How dowe capture the changes 𝑣1 and 𝑣2 make to persistent

state, and how do we reason about whether these changes

are intended or buggy?

Different solutions to address each challenge in isolation have

been proposed both by academia and industry. For example, there

exist versioned databases [6, 11, 14, 16, 27], diffing techniques [5, 13],

and tools to populate test databases [3]. Godefroid et al. [9] present

diff testing solutions for REST APIs, without providing a solution

for computing differences between two database instances. In this

paper, we present a diff testing framework that addresses all of the

challenges above.

• We present an efficient database branching layer that allows

us to quickly execute a large number of requests against a

production-scale database without impacting the actual produc-

tion database.
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• We present an efficient way to compute the difference between

two database branches that is independent of the size of the

underlying database. We also present a way to display these

differences using a three-way relational format that is easy for

developers to understand.

• We present a method to diff test entire execution sequences and

interleave requests between two software versions in order to

catch subtle bugs.

We implement these ideas on top of Postgres [22]. Branches can

be created almost instantly (<100ms), and the overhead of reading

from and writing to a branch is modest. Our solution is able to

quickly identify the types of bugs we’ve seen in production and

can provide to the user output that helps them quickly understand

the root causes of the bugs.

2 BUG ANALYSIS

We begin by describing the kinds of bugs our testing framework

aims to catch. We surveyed software rollout bugs that were re-

ported inside Google and in open-source projects [32]. We found

three main categories of bugs: data corruption, data incompatibility,

and false data assumptions. These bugs went unnoticed for days to

weeks, and teams spent days to months fixing them and developing

tools to prevent future occurrences. These bugs caused many inter-

nal services to be impacted, leading to substantial revenue loss. We

now provide examples of these three types of bugs that occurred

at Google. As we show in Section 8, our solution is able to catch

these bugs and enables developers to quickly fix them before they

arise in production.

Data Corruption. This type of bug involves corrupted data in a

database. Data corruption bugs are especially troublesome because

corrupted data can lie dormant in a database for a long period of

time before suddenly causing widespread impact. We found that it

is common for corrupted data to be present in production databases

for days before being discovered and reported.

One example in this category was a bug caused by protobuf [25]

serialization. In rare cases, serialized protobufs were being trun-

cated before being written to the database. This bug went unnoticed

for 10 days, causing one known database corruption and many in-

ternal services being impacted. To find all the corrupted data, the

team spent a month developing a data corruption detection tool.

Data Incompatibility. This type of bug involves two versions

𝑣1 and 𝑣2 of a system that have inconsistent interpretations of the

same data. For example, the two versions might disagree on the

endianness of some piece of encoded data. Data incompatibility

bugs are easily missed in testing because versions 𝑣1 and 𝑣2 are

often correct in isolation and are only buggy when they interact.

One example in this category was a bug caused by a version

𝑣1 of a system that assumed a column in a relational database

was always empty. Version 𝑣2 was rolled out to łfixž the problem

and allow the column to be non-empty. 𝑣2 began to populate the

column which caused 𝑣1 to start erroneously dropping rows. This

bug went unnoticed for 5 days. The bug had serious production

impact causing hundreds of rows to be dropped from the production

database. It took half a day to mitigate the incident. A postmortem

of the incident cited a lack of data compatibility testing as a key

contributor to the outage.

False Data Assumptions. This type of bug involves an applica-

tion version with incorrect assumptions about the data it accesses.

For example, a system may erroneously assume that an integer-

valued column in a database is always non-negative. This type of

bug can be hard to catch if the system is tested against data that is

not representative of the data in production. Testing against unrep-

resentative data is common. If a developer writes code with faulty

assumptions, they will likely craft synthetic data for testing that

reflects those same faulty assumptions.

One example of a bug in this category was caused by a system

with a hard-coded upper limit on the expected size of a database

table. A new version of the system was rolled out that lowered

this limit. Because the new version was consistently tested on

much smaller databases, the lower limit appeared unproblematic.

However, the size of the production database exceeded this limit,

causing jobs to crash in production. This bug was detected more

than 20 minutes after the production outage began. It took several

hours to identify the root cause and one day to resolve it, resulting

in substantial revenue loss across different products.

3 DIFF TESTING

In this section, we provide background on diff testing. In later sec-

tions, we explain how our testing framework leverages diff testing.

Differential testing (diff testing) was first introduced by McK-

eeman [15] to complement traditional software testing processes.

Over the past decade, diff testing has been quickly adopted by in-

dustry as a means of making testing processes more robust [5, 10,

15, 17]. We begin by explaining the diff testing of stateless systems.

Then, we discuss the challenges of diff testing stateful systems.

3.1 Stateless Diff Testing

Diff testing is a testing technique to find unexpected differences

in the behavior of two pieces of code that are supposed to behave

identically. For example, consider the two functions in Figure 1

which return the 𝑛th Fibonacci number.

def fib1(n):

if n <= 1:

return n

return (fib1(n-1) +

fib1(n-2))

def fib2(n):

x, y = 0, 1

for _ in range(n):

x, y = y, x + y

return x

Figure 1: Two (identical?) Fibonacci implementations

A diff test of these two functions repeatedly selects a value

for 𝑛 and evaluates fib1(𝑛) and fib2(𝑛), trying to find a case

where fib1(𝑛) ≠ fib2(𝑛). For example, fib1(−1) = −1, while

fib2(−1) = 0. The exact procedure by which inputs are generated

is out of scope for this paper. Typically, they are generated randomly

or drawn from a pool of hand-crafted inputs.

While diff testing can be used to test individual functionsÐlike

those in Figure 1Ðit is most commonly used to test entire versions

of an application. Specifically, diff testing can test that it is safe to

roll out a version 𝑣2 of a system to replace an existing version 𝑣1
that is serving production traffic. We assume that when a version

of the system 𝑣 receives a client request 𝑟 , it replies with a response

𝑣 (𝑟 ). Note that the exact format of the requests and responses is
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immaterial (e.g., HTTP, RPC, REST, etc.). As described above, diff

testing attempts to find a request 𝑟 such that 𝑣1 (𝑟 ) ≠ 𝑣2 (𝑟 ). If 𝑣1
and 𝑣2 respond differently to the same client request, it is a signal

that 𝑣2 might be buggy and unsafe to roll out.

Not all differences in behavior between 𝑣1 and 𝑣2 are a sign that

something is buggy. In fact, 𝑣2 often intentionally behaves differ-

ently than 𝑣1. For example, 𝑣2 might introduce a new feature to 𝑣1
or fix an existing bug in 𝑣1. To determine whether a difference in be-

havior between 𝑣1 and 𝑣2 is cause for alarm, diff testing frameworks

report diffs to developers. If 𝑣1 (𝑟 ) ≠ 𝑣2 (𝑟 ), a diff of responses 𝑣1 (𝑟 )

and 𝑣2 (𝑟 ) is shown to the developer to validate if the difference is

intended. Developers can manually inspect the diffs or write filters

to automatically validate diffs. The exact mechanism by which diffs

are processed is out of scope for this paper.

3.2 Stateful Diff Testing

Consider a version 𝑣 of a stateful system that receives client request

𝑟 and has access to a database in some initial state 𝜎 . It outputs

𝑜 = 𝑣 (𝑟 ) and also potentially mutates the database to a new state 𝜎′.

To diff test two versions 𝑣1 and 𝑣2, we want to find a request 𝑟 and

database state 𝜎 such that the versions produce different outputs

(i.e. 𝑣1 (𝑥) ≠ 𝑣2 (𝑥)) or yield different database states (i.e. 𝜎1 ≠ 𝜎2).

This is illustrated in Figure 2.

𝑟

𝜎

𝑣1

𝑜1

𝜎1

𝑟

𝜎

𝑣2

𝑜2

𝜎2

Figure 2: An illustration of stateful diff testing. The client

request 𝑟 is processed by software versions 𝑣1 and 𝑣2 with

initial database state 𝜎 . This produces responses 𝑜1 and 𝑜2
and database states 𝜎1 and 𝜎2, which are diffed.

Note that the diff testing process illustrated in Figure 2 must

allocate a separate database instance for each application version

𝑣1 and 𝑣2. If the two versions instead shared the same database

instance, request 𝑟 would be executed twice on the database: once

by 𝑣1 and once by 𝑣2. This double execution is not only incorrect,

but also makes it impossible to distinguish the changes made by 𝑣1
from the changes made by 𝑣2. Therefore, for every request, each

version is given its own isolated database instance to mutate. This

way, we end up with two independent database states (e.g., 𝜎1 and

𝜎2 in Figure 2) that we can diff.

As with stateless diff testing, developers sometimes deliberately

make changes to 𝑣2 to make it behave differently than 𝑣1. Thus, if

a diff testing framework finds a request 𝑟 that, when executed by

versions 𝑣1 and 𝑣2, yields unequal database states 𝜎1 and 𝜎2, the

diff testing framework presents the diff of the two database states

to the developer. The developer is responsible for inspecting the

diffs and determining if they are intended or not.

4 FRAMEWORK OVERVIEW

Our stateful diff testing framework takes the following three inputs:

(1) An initial database state 𝜎 . Our framework is agnostic to

how this database state is produced. For example, it can be

an empty database, or a synthetic database, or a snapshot of

the production database. However, we recommend that the

production database is copied into a testing environment,

as shown in Figure 3a.

(2) A set of client requests 𝑟1, 𝑟2, . . . , 𝑟𝑛 . Our framework is

agnostic to how these requests are produced. They can

be sampled from production traffic, manually written, or

randomly generated.

(3) Two binaries 𝑣1 and 𝑣2. Typically, 𝑣1 is currently running

in production, and 𝑣2 is the binary that will replace 𝑣1.

Given these inputs, the framework performs a sequence of steps

grouped into three sequential stages: Branching, Replaying, and

Diffing. The branching stage creates multiple branches of the initial

database state 𝜎 , as illustrated in Figure 3b. These branches are like

the branches you are familiar with in version control systems like

git [7]. They are lightweight, isolated, readable and writable views

derived from the initial database state. Notably, the branches are

not full copies of the database. They are cheap to create and small

in size. Section 5 describes branching in more detail.

The replaying stage then executes each request 𝑟 against binaries

𝑣1 and 𝑣2, as illustrated in Figure 3c. Each binary is executed against

one of the branches. This produces outputs 𝑜1 and 𝑜2 from 𝑣1 and 𝑣2,

respectively. It also leaves the branches in states 𝜎1 and 𝜎2 produced

by themodifications from 𝑣1 and 𝑣2, respectively. Section 6 describes

the replaying stage in more detail.

The diffing stage computes differences between 𝑜1 and 𝑜2 as

well as 𝜎1 and 𝜎2. If the diffs are non-empty, they are shown to the

developer. Section 7 describes the diffing stage in more detail.

5 BRANCHING

Branching is the process of creating a view of the initial database

that is lightweight, isolated, readable, and writable. Our framework

relies on branching to quickly create multiple copies of the initial

database. These branches are then used as the underlying storage

for replaying (Section 6) and diffing (Section 7).

As discussed earlier, branching needs to be a fast and lightweight

operation. In particular, creating physical copies of the underlying

database is not a realistic solution. Likewise, copying the produc-

tion database state into a different database system that supports

branching (e.g., Dolt [6] or Neon [16]) isn’t recommended either,

both for performance reasons and for the fact that the destination

database system is likely to have slightly different SQL semantics

than the original database.

For this reason, we implement a łbolt-onž approach for our diff

testing framework, built on top of Postgres triggers. Our implemen-

tation can efficiently branch Postgres databases without requiring

any modifications to the Postgres source code or to the application

being tested. It also avoids the need for complex query rewrite. In

this section, we describe the design of our łbolt-onž solution, and

in Section 8, we evaluate its performance.

5.1 Branches

Consider a Postgres database with relation 𝑅. To create a branch of

𝑅, we create two auxiliary tables 𝑅+ and 𝑅− as well as a database

view 𝑅′, all of which have (approximately) the same schema as 𝑅.

• 𝑅+ contains the insertions into 𝑅′.
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prod

environment

test

environment

𝜎 𝜎
clone

(a) The production database

is cloned from the production

environment into a testing en-

vironment where the diff test-

ing will be performed.

test environment

𝜎

𝜎

𝜎

branc
h

branch

(b) For every request 𝑟 , two

branches of the database are

created. The branches are

lightweight, isolated, readable

and writable views.

test environment

𝑟

𝑟

𝜎

𝜎

𝑣1

𝑣2

𝑜1

𝑜2

𝜎1

𝜎2

diff

(c) After the branches are created, the request 𝑟 is run through

versions 𝑣1 and 𝑣2. Each version executes against its own branch.

The final outputs (𝑜1 and 𝑜2) and final database branch states (𝜎1
and 𝜎2) are diffed.

Figure 3: An illustration of the execution of our stateful diff testing framework

a b

1 1

2 2

𝑅

a b

𝑅+

a b

𝑅−

a b

1 1

2 2

𝑅′

(a) The initial contents of 𝑅, 𝑅+, 𝑅− , and 𝑅′.

a b

1 1

2 2

𝑅

a b

3 3

𝑅+

a b

𝑅−

a b

1 1

2 2

3 3

𝑅′

(b) To insert the tuple (3, 3) into the branch, the tuple is inserted

into 𝑅+. 𝑅′ reflects this insertion.

a b

1 1

2 2

𝑅

a b

3 3

𝑅+

a b

2 2

𝑅−

a b

1 1

3 3

𝑅′

(c) To delete the tuple (2, 2) from the branch, the tuple is inserted

into 𝑅− . 𝑅′ reflects this deletion.

a b

1 1

2 2

𝑅

a b

3 3

1 42

𝑅+

a b

2 2

1 1

𝑅−

a b

1 42

3 3

𝑅′

(d) To update the tuple (1, 1) to (1, 42) in the branch, the tuple

(1, 1) is inserted into 𝑅− , and the tuple (1, 42) is inserted into 𝑅+.

𝑅′ reflects this update.

Figure 4: An example insertion (4b), deletion (4c), and update (4d) of a branched relation 𝑅(𝑎, 𝑏). Notable rows are in yellow.

• 𝑅− contains the deletions from 𝑅′.

• 𝑅′ contains the final contents of the branch and is defined as

𝑅′ = 𝑅 + 𝑅+ − 𝑅− , where + and − are multiset operations.

• Reads are performed against 𝑅′.

This branching scheme is best explained through an example.

Suppose we have a table 𝑅 defined as follows.

CREATE TABLE R(a int PRIMARY KEY, b int);

To branch 𝑅, we create tables 𝑅+ and 𝑅− . Note that 𝑅+ and

𝑅− have the same schema as 𝑅 except without the primary key

constraint, so they provide multiset semantics. We also create a

view 𝑅′ = 𝑅 + 𝑅+ − 𝑅− .

CREATE TABLE RPlus(a int NOT NULL, b int); -- 𝑅+

CREATE TABLE RMinus(a int NOT NULL, b int); -- 𝑅−

CREATE VIEW RPrime AS (SELECT * FROM R) -- 𝑅′

UNION ALL (SELECT * FROM RPlus)

EXCEPT ALL (SELECT * FROM RMinus);

Imagine that 𝑅 has contents {(1, 1), (2, 2)}, as illustrated in Fig-

ure 4a. 𝑅+ and 𝑅− are initially empty, and 𝑅′ is expectedly equal

to 𝑅. We now walk through an example of what happens when we

insert a tuple into the branch, delete a tuple from the branch, and

update a tuple in the branch.

• Insertion. To insert the tuple (3, 3) into the branch, the tuple

(3, 3) is inserted into 𝑅+, as illustrated in Figure 4b. Note that

𝑅 is unmodified, and 𝑅′ correctly reflects the insertion of the

tuple (3, 3).

• Deletion. To delete the tuple (2, 2) from the branch, the tuple

(2, 2) is inserted into 𝑅− , as illustrated in Figure 4c. Note that

𝑅 is again unmodified, and 𝑅′ correctly reflects the deletion of

the tuple (2, 2). Note that the tuple (2, 2) is added to 𝑅− only if
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the tuple already exists in 𝑅′. We discuss the details of how we

accomplish this momentarily.

• Update. To update the tuple (1, 1) to (1, 42) in the branch, the

tuple (1, 1) is inserted into 𝑅− , and the tuple (1, 42) is inserted

into 𝑅+, as illustrated in Figure 4d. The update is effectively

treated as the deletion of tuple (1, 1) followed by the insertion

of the tuple (1, 42).

We’ve described how to branch a single relation. To branch an

entire database, we simply branch every relation in the database.

5.2 Queries

Insertions into a branch should be written to 𝑅+; deletions should

be written to 𝑅− ; and updates should be written to both. We now

explain how we intercept queries to accomplish this. For example,

suppose a binary (𝑣1 or 𝑣2) executes the following SQL statement

which deletes rows from 𝑅:

DELETE FROM R Where b < 2;

When executing against a branch of 𝑅, this statement should not

delete rows from 𝑅. Instead, our diff testing framework needs to

find all rows in 𝑅′ that satisfy the condition b < 2 and then insert

these rows into 𝑅− .

First, we need to adjust queries to replace all references to a

relation 𝑅 with references to the branched view 𝑅′. We can do this

without modifying the developer’s binary and without rewriting

any queries by leveraging some renaming trickery.When branching

a relation 𝑅, we rename it 𝑅old, and then name the branched view

𝑅 instead of 𝑅′. This way, all existing queries in the developer’s

binary target the branched view rather than the underlying table.

Second, we need to intercept queries issued against the branched

view. To achieve this, we leverage Postgres’ support for register-

ing triggers on views [23]. Triggers on views are a special type of

database trigger that allow you to define actions to be performed

in response to modifications made to a view, even if the view itself

isn’t directly modifiable. Triggers on views work by intercepting

data modification operations (INSERT, UPDATE, DELETE) targeted at

the view and then executing predefined actions instead of directly

modifying the view’s data. While our framework requires Post-

gres, triggers on views are supported by multiple other relational

databases (e.g., Oracle [18], Microsoft SQL Server [20]).

For example, the trigger that translates deletions from 𝑅′ to

insertions into 𝑅− is shown in Figure 5. When a tuple is deleted

from 𝑅′, the tuple is bound to the variable OLD, and the R_deletion

function is executed, which inserts OLD into 𝑅− . The trigger is only

executed on tuples that exist in 𝑅′. Attempting to delete a tuple

that is not present in 𝑅′ will not invoke the trigger. The triggers

for handling insertions and updates are similar. Our framework

generates these triggers automatically when a branch is created.

5.3 Constraints

Constraints are rules enforced on the data in a relational database

to maintain its integrity, accuracy, and consistency. PRIMARY KEY,

FOREIGN KEY and NOT NULL are very common constraints. When

our diff testing framework branches a relation 𝑅 with constraints,

it generates a trigger that enforces the relation’s constraints. For

example, the trigger for handling insertions into a relation 𝑅 with

a primary key column 𝑎 asserts that there does not already exist

CREATE OR REPLACE FUNCTION R_deletion()

RETURNS TRIGGER

LANGUAGE plpgsql

AS BEGIN

INSERT INTO RMinus(a, b)

VALUES (OLD.a, OLD.b);

RETURN OLD;

END;

Figure 5: A trigger that translates deletions from 𝑅′ to inser-

tions into 𝑅− .

a tuple in 𝑅′ with 𝑎 = 𝑅′ .𝑎. Our diff testing framework currently

supports primary key, unique, non-null, and foreign key constraints.

5.4 Limitations

While our trigger-based łbolt-onž approach to branching is simple,

easy to adopt, and covers the common case, it has limitations. There

are some relations we cannot branch, and our branched databases

do not have 100% feature parity with plain databases. For example,

we do not support CHECK constraints or relations with preexisting

triggers. If an application depends on one of these unsupported

features, it cannot be tested with our framework.

These limitations are not fundamental to our approach. We can

support more database features. However, each feature requires

engineering effort to support. We believe it is possible (and not too

onerous) to support the most widely used features, but it would

require effort to support the long tail of seldom used features.

6 REPLAYING

Replaying is the second stage in our stateful diff testing framework.

It takes as input the branched copies of the database, as well as

the set of input requests 𝑟1, 𝑟2, ..., 𝑟𝑛 , and executes those requests

against binaries 𝑣1 and 𝑣2.

Replaying requests on top of a stateless system is easy: every

request is independent of every other request. That is, for every pair

of requests 𝑟1 and 𝑟2, 𝑟1 and 𝑟2 commute, i.e. they can be executed in

either order or not at all without any influence on future requests.

Replaying requests on top of a stateful system is challenging:

every request may mutate the database state in a way that affects all

subsequent requests. In fact, the entire purpose of persistent muta-

ble state is to enable meaningful interactions between requests. For

example, an e-commerce application would be useless if a checkout

was independent of prior requests to add items to a cart.

Sequences of requests: For stateful systems, therefore, it is in-

sufficient to test only a single request at a time. Even if every request

executes correctly in isolation, a sequence of requests may still ex-

hibit buggy behavior. Thus, our diff testing framework executes

sequences of requests, where every request is executed against the

database state produced by the previous request, as illustrated in

Figure 6. Each request 𝑟𝑖 takes as input the preceding database state

𝜎𝑖−1 and generates output 𝑜𝑖 and a new database state 𝜎𝑖 , across

the two binary versions 𝑣1 and 𝑣2. These intermediate outputs and

database states are diffed, as described in Section 7.

Interleaving requests: Recall that diff testing is used to build

confidence that version 𝑣2 of a system can be safely rolled out
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𝑣1 𝑣1 𝑣1𝜎 𝜎1.1 𝜎1.2 𝜎1.3

𝑟1 𝑟2 𝑟3𝑜1.1 𝑜1.2 𝑜1.3

𝑣2 𝑣2 𝑣2𝜎 𝜎2.1 𝜎2.2 𝜎2.3

𝑟1 𝑟2 𝑟3𝑜2.1 𝑜2.2 𝑜2.3

Figure 6: An illustration of diff testing a sequence of requests.

Requests 𝑟1, 𝑟2, and 𝑟3 are executed against versions 𝑣1 and 𝑣2.

The responses and intermediate database states are diffed.

to replace the existing version 𝑣1. During the rollout of 𝑣2, some

requests will be executed by 𝑣1 and others by 𝑣2. It is this interaction

between the two versions where bugs often hide [32]. Therefore, our

diff testing framework interleaves requests across the two versions

𝑣1 and 𝑣2, as illustrated in Figure 7.

𝑣1 𝑣2 𝑣1𝜎 𝜎1.1 𝜎1.2 𝜎1.3

𝑟1 𝑟2 𝑟3𝑜1.1 𝑜1.2 𝑜1.3

𝑣2 𝑣1 𝑣1𝜎 𝜎2.1 𝜎2.2 𝜎2.3

𝑟1 𝑟2 𝑟3𝑜2.1 𝑜2.2 𝑜2.3

Figure 7: An illustration of interleaved request execution.

The requests 𝑟1, 𝑟2, and 𝑟3 are executed in an interleaved

fashion against versions 𝑣1 and 𝑣2. Note that these are only

two of many possible interleavings. For 𝑛 requests, there are

2
𝑛 total interleavings.

More generally, for every request sequence, our diff testing

framework will execute the sequence entirely against 𝑣1, entirely

against 𝑣2 (as shown in Figure 6), and interleaved between 𝑣1 and

𝑣2 for some large but bounded number of random interleavings (as

shown in Figure 7). This interleaving checks that 𝑣2 is backward-

compatible with 𝑣1 and that 𝑣1 is forward-compatible with 𝑣2. Note

that every interleaving is executed against its own branch.

Limitations: Our diff testing framework executes all requests

serially, so it cannot be used to catch concurrency bugs. This limi-

tation is largely fundamental. If requests are replayed concurrently,

their execution is not deterministic. Different executions of the

same sequence of requests, let alone different sequences of requests,

could produce very different client replies and database states. As

a consequence, different sequences cannot be meaningfully diffed

when executed with concurrency.

7 DIFFING

Diffing is the third and final stage in our stateful diff testing frame-

work. It takes as input the replaying stage output, namely database

branches and client replies, and computes differences between them.

Recall from Figure 3 that a request 𝑟 is executed against versions

𝑣1 and 𝑣2 to produce client replies 𝑜1 and 𝑜2 as well as database

states 𝜎1 and 𝜎2. If the replies are unequal (𝑜1 ≠ 𝑜2) or the database

states are unequal (𝜎1 ≠ 𝜎2), a summary of the differences is shown

to the developer to determine if the differences are expected or

unexpected. It is thus critical that these diffs are easy for developers

to interpret and understand.

While the existing techniques for diffing client replies [5, 13]

work well and produce intuitive, easy to understand diffs, database

diffing remains challenging. In the rest of this section, we focus on

devising a practical database diffing solution.

There are two key aspects to diffing database states: how they

are displayed and how they are computed. The goal of displaying

the diffs is to present only the relevant differences to the user, and

to do so in a simple and easy to understand manner. This goal

is especially important for databases, which are by nature large.

Section 7.1 describes our approach to displaying diffs. We present

separate solutions for tables with and without primary keys.

As previously mentioned, for a stateful diffing framework to be

usable, the process of computing diffs must be efficient. In particular,

it is not acceptable for diff computation to iterate over the entire

database; instead, it should iterate over only the database portions

that have seen changes. Section 7.2 describes our algorithm for

computing database diffs, built on top of the branching solution

presented in Section 5.

We only describe how to diff two database states. We leave the

problem of diffing more than two database states to future work.

7.1 Displaying Diffs

7.1.1 With Primary Keys. Consider again the relation 𝑅(𝑎, 𝑏) with

primary key column 𝑎 and non-primary key column 𝑏. The initial

state, 𝑅, of the database is shown in Figure 8a. States 𝑅1 and 𝑅2,

produced by 𝑣1 and 𝑣2 after executing some request, are shown

in Figure 8b and Figure 8c. Note that 𝑣1 deleted both tuples (1, 1)

and (2, 2) and inserted tuple (4, 4). 𝑣2 updated tuple (1, 1) to (1, 42),

deleted tuple (2, 2), and inserted tuples (3, 3) and (4, 4).

a b

1 1

2 2

(a) 𝑅

a b

4 4

(b) 𝑅1

a b

1 42

3 3

4 4

(c) 𝑅2

Figure 8: Initial database state 𝑅 as well as states 𝑅1 and 𝑅2
produced by versions 𝑣1 and 𝑣2. Column a is underlined be-

cause it is a primary key.

The most straightforward way to show the diff of 𝑅1 and 𝑅2 is a

side-by-side two-way tabular diff as shown in Figure 9a. The two-

way diff is useful for quickly examining how 𝑅1 and 𝑅2 differ, but

the two-way diff is missing some important context. Specifically, it

is ambiguous how the differences in a two-way diff were produced.
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Looking only at the two-way diff in Figure 9a, it is unclear whether

𝑣1 deleted tuple (1, 42) from 𝑅, 𝑣2 added tuple (1, 42) to 𝑅, or 𝑣1
deleted some tuple with primary key 1 and then 𝑣2 updated the

tuple to (1, 42). The two-way diff also does not show that both 𝑣1
and 𝑣2 deleted tuple (2, 2) and added tuple (4, 4).

𝑅1 𝑅2
a b a b

Ð Ð 1 42

Ð Ð 3 3

(a) A two-way diff of 𝑅1 and 𝑅2.

𝑅1 𝑅 𝑅2
a b a b a b

Ð Ð 1 1 1 42

Ð Ð 2 2 Ð Ð

Ð Ð Ð Ð 3 3

4 4 Ð Ð 4 4

(b) A three-way diff of 𝑅, 𝑅1, and 𝑅2.

Figure 9: Example two-way and three-way diffs of the rela-

tions in Figure 8.

To address the shortcomings of two-way diffs, we introduce

three-way diffs, similar to the three-way diffs used by version con-

trol systems like git [7] when resolvingmerge conflicts. A three-way

diff, like the one shown in Figure 9b, shows the difference between

the original database state 𝑅 and the two derived states 𝑅1 and 𝑅2.

The first row in the three-way diff in Figure 9b shows that the

tuple (1, 1) exists in the original state 𝑅, but was deleted in 𝑅1 and

modified in 𝑅2. The second row shows that both 𝑣1 and 𝑣2 deleted

tuple (2, 2). The third row shows that 𝑣2 added tuple (3, 3). The

fourth row shows that both 𝑣1 and 𝑣2 added tuple (4, 4).

7.1.2 Without Primary Keys. Diffs of tables without primary keys

are similar to, but also a bit noisier than, diffs of tables with pri-

mary keys. Consider the relation 𝑅(𝑎, 𝑏) without any primary key

columns. States 𝑅, 𝑅1, and 𝑅2 are shown in Figure 10.

a b

4 4

5 5

6 6

(a) 𝑅

a b

1 1

2 2

6 6

(b) 𝑅1

a b

2 2

3 3

4 4

(c) 𝑅2

Figure 10: Initial database state 𝑅 as well as states 𝑅1 and 𝑅2
produced by versions 𝑣1 and 𝑣2. There are no primary keys.

The two-way diff of 𝑅1 and 𝑅2 is shown in Figure 11a. As with

two-way diffs of tables with primary keys, the two-way diffs are

helpful but ambiguous. Did 𝑣1 insert tuple (1, 1) or did 𝑣2 delete

tuple (1, 1)?

We similarly introduce three-way diffs, as shown in Figure 11b.

Rather than grouping changes by primary key (remember there is

no primary key), we group changes into one of six categories:

(1) Tuples that were inserted into 𝑅1 but not 𝑅2.

(2) Tuples that were inserted into 𝑅1 and 𝑅2.

(3) Tuples that were inserted into 𝑅2 but not 𝑅1.

(4) Tuples that were deleted from 𝑅1 but not 𝑅2.

(5) Tuples that were deleted from 𝑅1 and 𝑅2.

(6) Tuples that were deleted from 𝑅2 but not 𝑅1.

𝑅1 𝑅2
a b a b

1 1 Ð Ð

6 6 Ð Ð

Ð Ð 3 3

Ð Ð 4 4

(a) A two-way diff of 𝑅1 and 𝑅2.

𝑅1 𝑅 𝑅2
a b a b a b

1 1 Ð Ð Ð Ð

2 2 Ð Ð 2 2

Ð Ð Ð Ð 3 3

Ð Ð 4 4 4 4

Ð Ð 5 5 Ð Ð

6 6 6 6 Ð Ð

(b) A three-way diff of 𝑅, 𝑅1, and 𝑅2.

Figure 11: Example two-way and three-way diffs of the rela-

tions in Figure 10.

7.2 Computing Diffs

We now explain how to efficiently compute the three-way diff of

relations 𝑅, 𝑅1, and 𝑅2 both with and without primary keys. Recall

that 𝑅1 and 𝑅2 are branches and are implemented with relations

𝑅+
1
, 𝑅−

1
, 𝑅+

2
, and 𝑅−

2
. We compute the three-way diff in time propor-

tional to the size of these łplusž and łminusž tables, not the size

of the underlying table 𝑅. Thus, computing a diff is fast as long

as the diff is small (the common case), regardless of how big the

original data is. In contrast, the running time of a naive SQL-based

approach to diffing relations is proportional to the size of the rela-

tions themselves. In Section 8, we show that our diff algorithm can

be upwards of 100× faster than the naive approach.

7.2.1 With Primary Keys. We first look at how to compute the diff

of two relations with primary keys.

Step 1. First, we prune duplicate rows that appear in both a plus

table 𝑅+
𝑖
and minus table 𝑅−

𝑖
. We use the letter 𝑃 for łprunedž.

𝑃+𝑖 = 𝑅+𝑖 − 𝑅−𝑖 for 𝑖 ∈ {1, 2}

𝑃−𝑖 = 𝑅−𝑖 − 𝑅+𝑖 for 𝑖 ∈ {1, 2}

Step 2. Second, we collect the set of primary keys,𝐾 , for all rows

modified by 𝑣1 and 𝑣2. Let 𝜋 be a function that removes all but the

primary keys columns of 𝑅.

𝐾 = 𝜋 (𝑃+
1
) ∪ 𝜋 (𝑃−

1
) ∪ 𝜋 (𝑃+

2
) ∪ 𝜋 (𝑃−

2
)

Step 3. For every key 𝑘 in 𝐾 , we want to find the corresponding

tuple (if any) in 𝑅, 𝑅1, and 𝑅2. We can accomplish this by taking the

left outer joins 𝐾 ⊲⊳ 𝑅, 𝐾 ⊲⊳ 𝑅1, and 𝐾 ⊲⊳ 𝑅2, and then combining

the three results, grouping by primary key. However, computing

these left outer joins takes time proportional to the size of 𝑅. To

avoid this, we rewrite the left outer joins to equivalent queries that

only access 𝑃+
1
, 𝑃−

1
, 𝑃+

2
, and 𝑃−

2
.

𝐾 ⊲⊳ 𝑅 = 𝐾 ⊲⊳ (𝑃−
1
∪ 𝑃−

2
)

𝐾 ⊲⊳ 𝑅1 = 𝐾 ⊲⊳ (𝑃+
1
∪ (𝑃−

2
− 𝑃−

1
))

𝐾 ⊲⊳ 𝑅2 = 𝐾 ⊲⊳ (𝑃+
2
∪ (𝑃−

1
− 𝑃−

2
))

These queries are explained pictorially in Figure 12. 𝑃+
1
and 𝑃+

2

are disjoint from 𝑅, and 𝑃−
1
and 𝑃−

2
are subsets of 𝑅, so they can

drawn as the Venn diagram in Figure 12a. Figure 12b shows the

tuples with primary keys in 𝐾 . These are the tuples that will appear
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in the diff. Figure 12c and Figure 12d show the branched relations

𝑅1 and 𝑅2. Inspecting the diagrams, it’s clear that the intersection of

𝐾 and 𝑅 is 𝑃−
1
∪𝑃−

2
; the intersection of 𝐾 and 𝑅1 is 𝑃

+
1
∪ (𝑃−

2
−𝑃−

1
);

and the intersection of 𝐾 and 𝑅2 is 𝑃
+
2
∪ (𝑃−

1
− 𝑃−

2
).

𝑅

𝑃+
1

𝑃+
2

𝑃−
1

𝑃−
2

(a) 𝑅, 𝑃+
1
, 𝑃+

2
, 𝑃−

1
, and 𝑃−

2

𝑅

𝑃+
1

𝑃+
2
𝑃+
2

𝑃+
1

𝑃−
1

𝑃−
2
𝑃−
2

𝑃−
1

(b) Tuples with keys in 𝐾

𝑅

𝑃+
1

𝑃+
2

𝑃−
2
𝑃−
2

𝑃−
1

𝑃−
2

(c) 𝑅1

𝑅

𝑃+
1

𝑃+
2

𝑃−
1
𝑃−
1

𝑃−
2

𝑃−
1

(d) 𝑅2

Figure 12: An illustration of our three-way diff computation.

7.2.2 Without Primary Keys. As explained in Section 7.1.2, we

divide a diff without primary keys into six categories. We compute

these categories explicitly:

(1) 𝑃+
1
− 𝑃+

2
(inserted into 𝑅1 but not 𝑅2)

(2) 𝑃+
1
∩ 𝑃+

2
(inserted into 𝑅1 and 𝑅2)

(3) 𝑃+
2
− 𝑃+

1
(inserted into 𝑅2 but not 𝑅1)

(4) 𝑅−
1
− 𝑅−

2
(deleted from 𝑅1 but not 𝑅2)

(5) 𝑅−
1
∩ 𝑅−

2
(deleted from 𝑅1 and 𝑅2)

(6) 𝑅−
2
− 𝑅−

1
(deleted from 𝑅2 but not 𝑅1)

8 EVALUATION

We evaluated our diff testing framework on real-world bugs that

led to production outages within Google, as described in Section 2.

Our key findings are:

• Our framework was able to identify these bugs and provide

meaningful diffs to the user.

• Our framework creates branches and compute diffs twice as fast

as implementations built using Postgres [22] or Dolt [6], and

introduces modest overhead to reads and writes, making our

end-to-end diff testing both practical and capable of providing

timely diff results to the user.

In the following, the graphs show table rows or database rows

on a logarithmic scale.

8.1 Setup

Implementation.We implemented our diff testing framework in

Go [8]. The framework takes an initial database state, binaries 𝑣1
and 𝑣2, and a request log. It then repeatedly executes the work-

flow, performing the branching, replaying, and diffing stages for a

number of request interleavings.

Workloads. We recreated each bug category from Section 2 in

a widely used open-source application called Bank of Anthos [1]

which demonstrates how to implement a bank using modern devel-

opment practices.

Baselines. We compared the performance of our framework

against Postgres [22] and a versioned database Dolt [6]. Postgres

does not support branching or diffing, but we use it to establish a

performance baseline. Dolt is an open-source versioned database

service that supports built-in branching and diffing.

8.2 Finding Bugs

In Section 2, we identified three categories of bugs that occur in

practice in stateful applications that are challenging to find using

existing testing techniques. We recreated these bugs in Bank of

Anthos [1] and tested the buggy version of the application using

our diff testing framework.

To set up a diff testing for Bank of Anthos [1], it took an engineer

three days to create a testing environment for the application. Then

it took an engineer one day to generate valid requests for diff testing.

8.2.1 Data Corruption. We reproduced this bug by writing corrupt

data into the database for a small fraction of queries. The buggy

version of the application ran successfully without crashing or re-

turning any unexpected client responses. However, our diff testing

framework successfully flagged the corrupted data values when

diffing database states.

8.2.2 Data Incompatibility. We reproduced this bug by introduc-

ing a string-valued column to one of application’s databases. The

original version 𝑣1 and the buggy version 𝑣2 of the application dif-

fer in how long they expect the string to be. As in the production

incident, 𝑣1 and 𝑣2 work as expected in isolation, and 𝑣2 is backward-

compatible with 𝑣1. However, 𝑣1 is not forward-compatible with 𝑣2,

leading to the production outage. Our diff testing framework was

able to find the bug by interleaving requests between 𝑣1 and 𝑣2.

8.2.3 False Data Assumptions. We reproduced this bug by setting a

hard-coded upper limit on the expected size of a table in a database.

In the buggy version 𝑣2, the hard-coded upper limit is set to be

smaller than the size of the production table. This causes 𝑣2 to ignore

some rows in the table, which leads to 𝑣2 incorrectly processing

some requests. This bug is not caught when testing against a small

database. Since our diff testing framework supports lightweight

branching, we were able to run diff tests against a copy of the entire

production database to catch the bug, even though the production

database is very large.

8.3 Microbenchmarks

We benchmarked the performance of four major branch related

operations, as shown in Table 1: creating a branch, reading from a

branch, writing to a branch, and diffing two branches. The perfor-

mance of these operations is crucial in determining the feasibility

of any stateful testing solution in practice.

The operations were benchmarked on both primary key tables

and non-primary key tables. This split was necessary due to the

different branching implementations for the two types of tables

(Section 5), which exhibit different performance characteristics.

All the benchmarks were performed against tables that have

roughly 20,000, 100,000, 600,000, 1,000,000 and 2,000,000 rows, where

each row has two fields, and each field is between 5 and 20 bytes.

We create two tables in the same database for the benchmarks,

as shown in Figure 13. The two tables have a similar schema; the
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Table 1: A summary of our microbenchmarks. We compare

our framework against Dolt and Postgres.

𝑅+/𝑅− Dolt Postgres

Branch Create a branch Create a branch Copy database

Read Read from branch Read from branch Read from table

Write Write to branch Write to branch Write to table

Diff 3-way branch diff 2-way branch diff Naive SQL queries

only difference is that users_pk has a primary key column, while

users does not. The databases are populated with random data. All

benchmarks assume that the size of the database is much larger

than the size of the changes made to the database, which is the

common case.

CREATE TABLE users(

username VARCHAR(64) NOT NULL,

password VARCHAR(64) NOT NULL);

CREATE TABLE users_pk(

username VARCHAR(64) PRIMARY KEY,

password VARCHAR(64) NOT NULL);

Figure 13: The two tables used throughout our benchmarks

8.3.1 Branching. In Figure 14, we show the time it takes to create a

branch as a function of the size of the database (two tables included).

Postgres does not support branching, so we show the time it takes

to copy the database in its entirety. Note that the graph shows the

latency (the 𝑦-axis) on a logarithmic scale.

Dolt requires roughly 10 milliseconds to create a branch regard-

less of the size of the database. Our framework requires roughly 100

milliseconds, also regardless of the size of the database. To create a

branch of relation 𝑅, our framework creates auxiliary relations 𝑅+,

𝑅− , and 𝑅′ and registers a number of triggers. All these operations

are independent of the size of the database. The time to copy a Post-

gres database expectedly increases with the size of the database

and is between 10× and 100× slower than our framework for the

database sizes we evaluated.

Figure 14: Branch latency for entire database

8.3.2 Read Performance. To measure the performance of reads

performed against a branch, we execute the queries shown in Fig-

ure 15. We picked these queries because they have different query

execution plans and appear commonly in practice. For Postgres, we

execute the queries against regular tables, as there is no branching.

We run each query 250 times. The average latency across these

runs is shown in Figures 16, 17, and 18. The standard deviations of

the measurements are shown as error bars in the graphs.

For Figure 16, we execute a point query to get either 0 or 1

records for the table with primary key, and ∼ 10 records for the

table without primary key. For Figure 17, we ran a short-range scan

to get ∼0.5% of all rows. For Figure 18, we scan the full table.

-- Query 1: Retrieve a small set of records based on

-- a single, exact match on a specific attribute.

SELECT * FROM users

WHERE username = 'aaaaaaaaaa';

-- Query 2: Retrieve a small set of records based on

-- conditional filters and pattern matches.

SELECT * FROM users

WHERE LENGTH(password) = 8 AND username LIKE 'a%%';

-- Query 3: A full table scan.

SELECT * FROM users;

Figure 15: The queries we run against the users table. The

queries for the users_pk table are identical.

From Figures 16 and 17, we see that our prototype introduces a

very modest read overhead compared to Postgres, with 3× higher

latency in the worst case. Dolt latency is on par with our framework

for tables with primary keys, but is significantly worse for tables

without primary keys.

Figure 18 shows that our solution does introduce significant read

overheads for full table scans of tables without primary keys and

slight but non-negligible read overheads for tables with primary

keys. However, full table scans of large tables without primary

keys are rare in practice and should be avoided, so we left this

optimization as future work.

(a) With Primary Key (b) Without Primary Key

Figure 16: Query 1 Latency

8.3.3 Write Performance. Figure 19 shows the latency of inserting

a row into a branch as a function of the size of the database. For

Postgres, the rows are inserted into a regular table. We perform the

insertion 1,000 times and plot the average write latency.

Our framework introduces a negligible amount of write overhead

compared to Postgres. The overhead comes from the trigger that

is executed whenever a row is inserted into a branch. This trigger
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(a) With Primary Key (b) Without Primary Key

Figure 17: Query 2 Latency

(a) With Primary Key (b) Without Primary Key

Figure 18: Query 3 Latency

validates database constraints and forwards the writes to 𝑅+ or 𝑅− .

These overheads are constant, regardless of the size of the database.

Dolt is roughly 3× to 4× slower than our framework and Postgres.

(a) With Primary Key (b) Without Primary Key

Figure 19: Write Latency

8.3.4 Diffing. Figure 20 shows the latency of computing the diff

of two branches as a function of the size of the database. Note that

the latency (𝑦-axis) is shown on a logarithmic scale. Postgres does

not support built-in diffing, so we instead run the following queries

to compute a naive two-way diff between relations A and B:

SELECT * FROM A EXCEPT ALL SELECT * FROM B;

SELECT * FROM B EXCEPT ALL SELECT * FROM A;

Our framework computes diffs in approximately 100 millisec-

onds, which is roughly 2× to 3× slower than Dolt. Also note that

the time to compute a diff does not increase with the size of the

database. As explained in Section 7, the time to compute a diff

is determined by the size of the diff rather than the size of the

database. In practice, the sizes of the diffs are significantly smaller

than the sizes of the database. In contrast, the naive approach to

computing diffs using Postgres takes time proportional to the size

of the database and is up to 1, 000× slower than our framework.

(a) With Primary Key (b) Without Primary Key

Figure 20: Diff Latency

8.3.5 Interleaving. There are 2𝑛 total ways to interleave 𝑛 requests

between two versions, but most bugs require far fewer interleavings

to manifest. Data corruption and false data assumption bugs often

don’t require interleaving at all. Data incompatibility bugs often

involve two requests interleaved across the two versions, which

requires only four interleavings in expectation.

For example, consider a sequence of 𝑛 requests where two re-

quests 𝑟𝑖 and 𝑟 𝑗 are susceptible to a forward compatibility bug. That

is, if 𝑟𝑖 is run in 𝑣2 and 𝑟 𝑗 is run on 𝑣1, then a bug is triggered.

In expectation, it requires only four random interleavings of the

request sequence to find such a bug.

In general, it is possible that some pathological bugs might only

manifest given a peculiar interleaving of requests. If a bug requires a

specific interleaving of𝑚 requests in a sequence of 𝑛 total requests,

then it will take 2𝑚 interleavings to find the bug in expectation.

However, we believe𝑚 is small for the majority of bugs.

8.3.6 End-to-End Runtime. Since branching and diffing introduce

almost no overhead, and read and write operations introduce mod-

est overhead, the end-to-end runtime of our framework is mainly

determined by the time it takes to execute a request against the

application being tested, the number of requests to be executed,

and the number of interleavings that are explored.

Table 2 shows the time and number of interleaving our frame-

work required to find the bugs outlined in Section 8.2. For com-

parison, executing the same requests on an unmodified Postgres

database takes 27.06 seconds.

Table 2: Time required to find the bugs in Section 8.2

Time Interleavings

Data Corruption Bug (Sec 8.2.1) 55.88 s 2

Data Incompatibility Bug (Sec 8.2.2) 110.48 s 4

False Data Assumption Bug (Sec 8.2.3) 55.31 s 2
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8.4 Sensitivity analysis

To accurately assess our solution in a practical environment, we

repeat the branching, diffing, and read/write benchmarks in Sec-

tion 8.3 but with larger database sizes. We benchmark our frame-

work on tables that have roughly 20,000, 600,000, 2,000,000, 11,000,000,

40,000,000 rows. Each database has one table with a primary key

and one table without a primary key.

Figure 21 shows that branch latency is independent of database

size. Figure 22, 23, and 24 show that read latency increases with

database size for the three queries in Figure 15. This is expected

because, as the size of the database increases, the queries need

to scan more rows and pages to find the required data. Figure 25

shows that writes continue to introduce negligible overhead when

the database size grows. Figure 26 shows diff latency for various

numbers of modified rows. Diff latency increases as the number of

modified rows increase, but it is independent of database size.

Figure 21: Branch latency for entire database

(a) With Primary Key (b) Without Primary Key

Figure 22: Query 1 Latency

(a) With Primary Key (b) Without Primary Key

Figure 23: Query 2 Latency

(a) With Primary Key (b) Without Primary Key

Figure 24: Query 3 Latency

(a) With Primary Key (b) Without Primary Key

Figure 25: Write Latency

(a) With Primary Key (b) Without Primary Key

Figure 26: Diff Latency

8.5 Macrobenchmark with YCSB

Yahoo! Cloud Serving Benchmark (YCSB) [4] is an open-source spec-

ification and program suite to simulate real-world workloads for

benchmarking database management systems. We benchmark the

read and write performance of our approach with all six core work-

loads [31] of YCSB. Workloads A-F are write-heavy, read-heavy,

read-only, read latest, short range reads, and read-modify-write

workloads respectively. We load 50,000,000 rows for each work-

load, and each workload used 1,000-byte records with ten 100-byte

fields each. During the benchmarks, we execute 1000 operations

per workload with uniform request distribution. Because our frame-

work currently does not support concurrency, we set the number of

threads to be one. Figure 27 shows the benchmark results compared

against vanilla Postgres. Our solution introduces modest overhead

for all workloads. The standard deviations of the measurements are

shown as error bars in the graphs.
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Figure 27: YCSB benchmark results.

9 RELATED WORK

Versioned Databases. Across academia and industry, there are

many versioned databases [6, 11, 14, 16, 27]. For instance, Or-

pheusDB [11] introduces a dataset version control system that

is łbolted-onž to a relational database. Decibel [14] describes a new

version-oriented storage engine designed łfrom the ground upž to

support versioning. These databases target collaborative data sci-

ence while we target stateful diff testing. This difference in focus

led to very different software implementations.

Take OrpheusDB as an example, which has poor performance on

diff testing workloads. Given a relation 𝑅(𝑎, 𝑏), OrpheusDB create

two tables: one for data and one for version metadata. The data table

is a copy of 𝑅 with a special 𝑟𝑖𝑑 column prepended. The versioning

table contains one row for every version, and the row contains a

list of all the 𝑟𝑖𝑑s in that version.

Creating a branch of a versioned OrpheusDB table is a two-step

procedure. First, you must export the versioned table into a CSV

file or into a plain Postgres table. This requires a full copy of the

entire database. After you make modifications to the exported table,

you can import the table back into OrpheusDB, which again does

work proportional to the size of the database.

OrpheusDB does not support in-place writes. To modify a row of

a table, you must export the table, modify the row externally to Or-

pheusDB, and then import the modified table back into OrpheusDB.

Thus, every write requires a full database copy.

To understand how OrpheusDB executes reads, consider the

OrpheusDB query SELECT COUNT(*) FROM VERSION 1 OF CVD

R which returns the number of rows in version 1 of relation 𝑅.

OrpheusDB implements this query by first fetching the 𝑟𝑖𝑑s for

version 1 from the version metadata table (e.g., {1, 2, 3}). It concate-

nates these versions into a string and then injects them into a query

that looks like the following:

SELECT COUNT(*)

FROM Rdata

WHERE rid = ANY('{1, 2, 3}'::int[])

The time to construct the query requires time proportional to the

size of the table. The query itself is slow because of the additional

WHERE rid = ANY(...) clause. The size of the query is proportional

to the size of the database.

Empirically, running SELECT COUNT(*) FROM R using plain Post-

gres on a relation with one million rows takes 0.855 milliseconds.

Running the query using OrpheusDB is over 2,500× slower, taking

2.26 seconds. This behavior might be acceptable for collaborative

data science workloads where relations are small and modifications

infrequent. But for stateful diff testing, where relations are huge and

modifications are very frequent, OrpheusDB unacceptably slow.

Dolt [6] and Neon [16] are mature versioned database products

used by several companies. Neon uses copy-on-write techniques

and supports branching but not diffing. Dolt uses a Prolly [24]

tree data structure to implement the storage layer and supports

both branching and diffing. These databases are implemented as

separate database services. It is not practical to integrate them into a

production testing framework, since it would require developers to

connect to a different database service, migrate all their production

data, and change the queries in their code.

Testing Stateful Services. In [3], Chays et al. introduce a frame-

work for testing database applications. They introduce a tool for

populating the database with meaningful data that satisfies data-

base constraints. However, this data is not guaranteed to mimic the

production environment. For example, some bugs only occur with

certain database sizes. In addition, developers have to replicate the

database for each individual test.

Detecting Rollout Failures. In [32], Zhang et al. studied the

root cause of upgrade failures and concluded that data syntax and

semantics incompatibility are the main reasons for incompatible

cross-version interactions. They simulate a three node cluster of the

target distributed system to test full-stop upgrades, rolling upgrades,

and new nodes joining the system.

Mvedsua [21] introduced a novel approach to dynamic soft-

ware updating, using multi-version execution to update in-memory,

stateful applications. Mvedsua mainly focuses on updating live,

in-memory stateful service, while our work concentrates on diff

testing stateful services backed by a relational database.

Database Snapshots.Most cloud relational databases support

point-in-time recovery [29] by using write-ahead logging [30]. Us-

ing point-in-time recovery, we can restore a database at a given

timestamp. Only some databases (e.g., Oracle [19]) support flash-

back AS OF queries, which return database objects as of a previous

point in time. We recommend developers use database snapshots to

create the initial database state to test against. However, on its own,

database snapshots are too inefficient to be used for diff testing.

Efficient branching is needed in conjunction with snapshots.

10 CONCLUSION

In this paper, we presented a practical stateful diff testing frame-

work that leverages a combination of three techniques. First, our

łbolt-onž approach to branching databases allows the framework to

test against entire production databases without having to make

expensive database copies. Second, our framework computes three-

way relational diffs between database branches in time proportional

to the size of the diffs. Third, our framework interleaves request

sequences between software versions to increase test coverage. We

showed that our framework is able to identify common categories

of catastrophic bugs that occur in practice during the rollout of

stateful applications with minimal performance overhead.
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