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ABSTRACT

In emails, information abounds. Whether it be a bill re-
minder, a hotel confirmation, or a shipping notification, our
emails contain useful bits of information that enable a num-
ber of applications. Most of this email traffic is machine-
generated, sent from a business to a human. These business-
to-consumer emails are typically instantiated from a set of
email templates, and discovering these templates is a key
step in enabling a variety of intelligent experiences. Exist-
ing email information extraction systems typically separate
information extraction into two steps: an offline template
discovery process (called template induction) that is period-
ically run on a sample of emails, and an online email anno-
tation process that applies discovered templates to emails as
they arrive. Since information extraction requires an email’s
template to be known, any delay in discovering a newly cre-
ated template causes missed extractions, lowering the overall
extraction coverage. In this paper, we present a novel system
called Crusher that discovers templates completely online,
reducing template discovery delay from a week (for the ex-
isting MapReduce-based batch system) to minutes. Further-
more, Crusher has a resource consumption footprint that is
significantly smaller than the existing batch system. We also
report on the surprising lesson we learned that conventional
stream processing systems do not present a good framework
on which to build Crusher. Crusher delivers an order of
magnitude more throughput than a prototype built using
a stream processing engine. We hope that these lessons
help designers of stream processing systems accommodate
a broader range of applications like online template induc-
tion in the future.
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1. INTRODUCTION

People receive hundreds of billions of emails every day [34].
This data contains an abundance of useful information — on-
line purchases, travel bookings, newsletters, updates from
services such as renewal and payment reminders, appoint-
ment confirmations, and even personalized promotional of-
fers. Mining this information enables a number of novel
applications:

e The Google Assistant can answer queries such as “When
is my next bill due?” using information mined from bill
reminder emails [31].

e If a user walks by a store for which they have received
a promotional offer email, the Google Assistant can
proactively remind them of the offer using information
mined from the email [31].

e Email clients can group causally related emails to-
gether into a single email thread [5]. For example,
an order confirmation and corresponding shipping no-
tification can be grouped together.

Most emails found in the wild are not handwritten emails
sent between two humans. Rather, 90% of email traffic
consists of machine-generated business-to-consumer (B2C)
emails instantiated from a collection of a few million email
templates, as illustrated in Figure 1. Existing email mining
systems take advantage of this templatic nature of emails to
extract information from emails using a two-step process [11,
20, 21, 31].

In the first step, these systems attempt to deduce the
templates that businesses use to instantiate their business-
to-consumer emails, a process known as template induc-
tion. To perform template induction, these systems cluster
a sample of emails together using a carefully designed finger-
print of the email as the grouping key. This key' groups two

'Section 2.1 describes examples of these email fingerprints,
including the locality-sensitive hash of the email structure
that is used in Crusher.
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Figure 1: Screenshot of an order confirmation template.
Personalized field locations and their types (e.g., order num-
ber, shipping address, price, etc.) are highlighted in red.

emails together if it is likely that they are instantiated from
the same template. Then, the systems generate an email
template for every email cluster and annotate the template
with various descriptive metadata (e.g., What language is
the template written in? Is the template spam? Is the tem-
plate a hotel confirmation? If so, where in the template
are key fields like the address, check-in date, and check-out
date?).

In the second step, email annotation, email mining sys-
tems use the templates that were computed using template
induction to annotate other emails. In particular, given an
email to annotate, an email mining system computes the
email’s fingerprint to determine the corresponding template
and then annotates the email with information from the
template (e.g., the email’s language, whether the email is
spam, whether the email is a hotel confirmation, and if so,
the check-in date). Downstream applications can then use
the information stored in the email’s annotations.

More formally, template induction is the problem where
we are given a set of emails F = {e1, e2, €3, ...} and we want
to learn a function f such that f(ez) = f(ey) iff e, and
ey were instantiated from the same underlying template or
script. Email annotation on the other hand is the (simpler)
problem where given an email e,, the annotator g returns
f(ez) and optionally other data associated with this tem-
plate.

Traditionally, email mining systems separate these two
logical steps (i.e. template induction and email annotation)
into two distinct computational operations [20, 31]. Tem-
plate induction is performed offline in batch, while email
annotation is performed online as new emails arrive into
the system. For example, template induction can be run
once every week on a sample of the most recent emails, and
emails can be annotated in real time as they are received.

Offline template induction has a number of inherent disad-
vantages. Chief among these is the matter of large template

induction delays. There is a delay between when a business
creates a new email template and when an email mining sys-
tem discovers the template. Any emails instantiated from
the template that are sent during this period of time cannot
be annotated. By performing template induction offline, this
delay can grow to the order of a week, leading to a number
of unpleasant user experiences (e.g., the Google Assistant
telling someone that they do not have any bills due, even
though they received a bill reminder email a couple of days
earlier).

In this paper, we present a fully online email mining sys-
tem that greatly reduces this delay by performing both tem-
plate induction and email annotation online. Our system,
called Crusher, is a redesign of Juicer, an email mining sys-
tem that was developed at Google and previously described
n [31]. Whereas Juicer performs template induction offline
and email annotation online, Crusher performs both online.

The benefits of online template induction in terms of dis-
covering a template sooner are obvious. However, this ad-
vantage comes at the cost of system complexity. Crusher
has to cluster, templatize, and annotate billions of emails in
real time all while providing high throughput, low-latency,
scalability, availability, and user privacy. In contrast, Juicer
uses a single large MapReduce job for template induction.

We initially attempted to sidestep many of these complex-
ities by implementing Crusher using an existing stream pro-
cessing system such as Google MillWheel [6], Spark Stream-
ing [38], Apache Storm [35], Apache Flink [15], or Apache
Beam [7]. Unfortunately, we found that many of these
stream processing systems were lacking the features—namely,
complex triggers and mature stateful processing—that we
needed to adequately implement Crusher. In Section 5, we
share our experience and elaborate on these features. We
believe that implementing these features in existing stream
processing systems would enable a large class of applications.

In summary, we make the following contributions:

e We describe the task of online template induction, a
novel workload core to email mining that has not pre-
viously been described in the data management liter-
ature.

e We present the design and implementation of Crusher,
a planet-scale email mining system that performs tem-
plate induction and email annotation online.

e We explain several non-obvious lessons that we learned
through our experience of (unsuccessfully) implement-
ing Crusher using existing stream processing systems.
In particular, we provide insights into the features
that, if present in existing stream processing systems,
would enable a larger class of applications, including
ours.

e We report that Crusher discovers 1.5 million more tem-
plates weekly, serves them to the template annotation
system with a delay of minutes rather than days, and
delivers a resource savings of 58% CPU time, 93%
memory, and 90% disk relative to Juicer.

2. EMAIL CLUSTERING

In this section, we elaborate on how email mining systems
like Juicer and Crusher extract information from emails us-
ing a combination of template induction and email anno-
tation. For now, we defer discussion of whether template



induction is performed offline or online. We instead focus
on the abstract algorithm behind template induction and de-
scribe how applications make use of template annotations.

2.1 Template Induction

Template induction consists of two parts. Email clus-
tering groups emails together based on the likelihood that
they were instantiated from the same template. Template
formation processes each email in these clusters by using a
set of user-defined functions to create and annotate a tem-
plate.

Email Clustering A central idea in template induction
is to generate a fingerprint for emails so that all emails gen-
erated from the same template can be easily mapped to the
same fingerprint. This fingerprint can then be used as a key
for the set of known templates. Several strategies have been
described in the literature for how to compute such a finger-
print [5, 21]. One approach [5] is to use the fact that most
instantiations of a single template are delivered from the
same email address (e.g., googlestore-noreply@google.com)
with subject lines that can be represented by fixed terms and
wildcards (e.g., “Your order of (wildcard) has shipped!”). A
hash of the sender and a canonicalized subject expression
has been shown to be a good way to compute a template
key (or fingerprint) [5].

Juicer and Crusher make the assumption that emails de-
rived from the same original template share similar struc-
ture, as manifested by their HITML DOM trees. We convert
the DOM tree of a given email into a set S of XPaths through
an in-order traversal. Our XPath representation only in-
cludes HTML tags and their indices, omitting all HTML
attributes and values. For example, an XPath of a cell in
the second row and third column of a table might be

/html [0] /body [0]/table[0]/tr[1]/td[2]

Note that since we omit all content, S is representative
of the structure of the email only. We then draw three sub-
sets from S using MinHash [14], a method for consistent
sampling of sets. Each subset is represented by a hash of
its elements, i.e. a numeric value. We compute three Min-
Hash values, each with a different (but fixed) seed to get
three different (but consistent) hash values. For email clus-
ters that are exactly identical in structure, this means that
three identical hash values will be obtained. For emails that
have slight deviations from one another, but belong to the
same template, there is a high probability that at least one
of these three hashes will coincide with one another, and
thus the template can be born from clustering the emails
on that hash and discarding the remaining hashes. We use
MinHash instead of an exact hash of the XPaths to allow
for similar but not identical emails to be clustered together.
For example, a purchase receipt email from an online retailer
might list a variable number of items in the templated email
sent to its users. By using MinHash, we prevent these slight
differences from dividing the clusters.

Template Formation After grouping emails together
based on their fingerprints, a template is formed if and only
if the email cluster passes the k-anonymity property. In our
case, the cluster of emails with the same fingerprint must
contain emails sent to at least k unique recipients. If the
cluster satisfies this constraint, we consider it a representa-
tive cluster of a B2C template and its unique MinHash as
its template ID.

The cluster of emails is then sent to a set of user-defined
cluster aggregators (UDCAS), each of which has the op-
portunity to process all the emails in the cluster and return a
single template annotation that is appended to the template
and available during email annotation. Aggregating infor-
mation over a cluster of emails is a powerful enabler. For ex-
ample, consider date disambiguation. The date “1/2/2019”
is ambiguous; it is unclear if it corresponds to the 2nd of Jan-
uary or the 1st of February. A date disambiguation UDCA
may extract all unambiguous dates contained in a cluster’s
emails and record the format of those dates in the template.
An email annotator, given an email with an ambiguous date,
can look up the email’s template and use its date format an-
notation to disambiguate the date. Additional UDCAs and
their applications are described in the following section.

2.2 Applications of Templates

Template induction has proven to be useful for a variety
of applications. In fact, the template ID itself is a useful
signal for tasks such as spam and phishing detection, causal
threading [5], and email search ranking [13].

UDCASs and the template annotations they produce have
also enabled a number of applications that were previously
impossible or very difficult to perform without templates,
such as the previously described date disambiguation UDCA.

For example, processing the cluster of emails belonging to
a single template enables the ability to determine portions
of these emails that are fized across all instantiations. Re-
sultant fized text and even fixed images have been shown to
be useful for classification tasks [30, 37].

Information extraction over emails, described in detail in
[31], critically relies on the UDCA infrastructure in deter-
mining the vertical, or category, of templates (e.g. purchase
receipt, hotel confirmation, etc.), followed by determining
for that email’s template a set of extraction rules that in-
dicate the location of variable fields pertinent to the given
vertical, such as the check-in and check-out dates and ad-
dress for a hotel confirmation template.

Vertical labeling is done through a UDCA that executes
a set of machine-learned classifiers over each email in a tem-
plate cluster that labels each email in the cluster as a hotel
confirmation, purchase receipt, bill reminder, etc. Once all
emails have been processed, the template is annotated with
the label that is the most frequent across the cluster and is
above a predetermined threshold.

A subsequent UDCA is applied to the cluster of emails
and uses a set of field classifiers to determine the locations
of the fields that are pertinent to the given vertical. For
example, in the hotel confirmation case, we apply check-in,
check-out, hotel name, and hotel address field classifiers to
the XPaths of each email. Note that not all XPaths are
processed; instead we utilize generic annotations, such as
dates, times, and addresses to focus on promising XPaths.
Similar to vertical labeling, each field classifier is applied to
every XPath in every email, producing a probability. For
each field, the XPath with the highest average probability
of containing that field is recorded as the field’s location,
resulting in an extraction rule.

2.3 Discussion

The effectiveness of email clustering and template forma-
tion depends on the size and recency of the clusters. If
the clusters are too small, then (a) we run the risk of k-
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anonymization suppressing the template and (b) relatively
few emails being available to the UDCAs, resulting in less re-
liable vertical classification and field extraction rules. Thus,
bigger clusters are better.

Moreover, if clusters are too old or too stale, then the an-
notations produced by the UDCAs might deteriorate over
time as templates evolve. For example, consider field ex-
traction. If a template changes the location of a field from
one XPath to another, the locality-sensitive nature of the
MinHash may still allow for new emails to map to that tem-
plate ID, however not all of the underlying template anno-
tations may work for the new email. For example, the date
disambiguation strategy may still hold, however the field ex-
traction rules, which rely on exact XPath matching, may no
longer trigger since the field has been moved to a new loca-
tion. Thus, we must re-induce templates periodically over
newer emails in order to prevent staleness.

3. Juicer

In Section 2, we motivated why email mining systems per-
form template induction. We now turn our attention to the
matter of when (and consequently how) to perform it. In
this section, we summarize the design of Juicer, a system
that performs template induction offline using a MapRe-
duce that is run once every week. Juicer has been run-
ning in production for five years and has been previously
described in [31]. We then discuss the shortcomings and
limitations of this offline approach to template induction.
In the next section, we present an online approach, imple-
mented in Crusher, that overcomes these limitations.

3.1 Architecture

Juicer’s architecture is illustrated in Figure 2. We de-
scribe how Juicer performs email annotation and then how
it performs template induction.

Email Annotation When Gmail receives an email mes-
sage, this message is sent to a stateless Annotation Ser-
vice. The Annotation Service consists of a number of de-
terministic annotators. Each annotator is a piece of code
that optionally attaches a piece of metadata, called an anno-
tation, to the email. The massive scale and online nature of
the Annotation Service imposes strict latency requirements.
After an email has been completely processed by the set of

annotators, the email (along with its annotations) is per-
sisted in an external database. A number of downstream
applications (e.g., email search, spam and phishing detec-
tion, Google assistant queries, proactive notifications, etc.)
use the annotated emails persisted in this database.

One of the annotators in the Annotation Service is the
Juicer Annotator. When the JuicerAnnotator receives an
email, it computes the email’s three MinHash values, as de-
scribed in Section 2. The JuicerAnnotator then issues get
requests to a read-optimized key-value store with these Min-
Hash values as keys. We’ll see momentarily that after Juicer
performs template induction, it stores templates in this key-
value store, with each template keyed by its corresponding
template ID. The key-value store is optimized for fast reads,
but also supports infrequent batch updates to large ranges
of keys. If the JuicerAnnotator finds a template in the key-
value store for the email, then the JuicerAnnotator anno-
tates the email with the template’s vertical and uses the
template’s extraction rules to extract the relevant fields.

Template Induction The key distinguishing feature of
Juicer’s architecture is that it performs template induction
offline. To do so, Juicer runs a weekly MapReduce (see Al-
gorithm 1) that computes templates from 0.5% of the last
90 days of Gmail messages that are stored in the external
database described above. The map phase of the MapRe-
duce computes the MinHash values of the input emails. The
reduce phase collects emails with the same MinHash value,
determines if they pass the k-anonymity threshold (i.e. are
sent to at least k distinct recipients), and if so, forms tem-
plates as described in Section 2. The output of the MapRe-
duce replaces the contents of the key-value store.

Algorithm 1: Juicer MapReduce pseudocode.

Input: A set of email documents D,d € D.
Output: A set of Juicer templates T',t € T'.
1 Function Map(doc d):

2 hashes [h1, ha, h3] < MINHASH(d)

3 foreach h € [h1, h2, hs] do

4 | EMIT(h, d)

5 end

6 Function Reduce (hash h, docs [d1, d2, ...]):
7 template ¢ < FORMTEMPLATE([d1, d2, ...])
8 EMIT(t)

3.2 Limitations

The offline approach to template induction has the obvi-
ous advantage of simplicity and scale. MapReduce is well-
understood and designed to scale to large data parallel work-
loads like template induction. By creating templates outside
of the latency-bounded Annotation Service, we avoid many
of the availability and scalability challenges that come with
developing an online template induction service. However,
there are also a number of drawbacks to Juicer’s offline de-
sign. These drawbacks can be roughly grouped into latency,
recall, and efficiency limitations.

Latency The batch nature of Juicer’s email clustering
stage limits the frequency with which clustering can be ex-
ecuted within a given resource footprint. Adding resources
can increase this frequency, but frequency scales at best lin-
early with resource requirements and in practice worse due
to the skewed distribution of emails over templates. This



means that there is a delay between when a template is cre-
ated by a sender and when Juicer forms a corresponding
template that it can use to annotate emails.

This delay can negatively affect many applications that
use Juicer. For example, if a bank creates a new template
for their bill reminder emails, and a user asks the Google
Assistant about their upcoming bills, the Assistant may not
know about bill reminder emails instantiated from the re-
cently created template. Similarly, retail stores often offer
seasonal promotions that expire quickly (e.g., 50% off tortilla
chips before Super Bowl Sunday, 10% off wrapping paper be-
fore Christmas). If Juicer does not detect these templates
quickly enough, the promotion may expire before a user can
be notified.

Recall Sampling is one means of reducing the latency
of Juicer. In order to terminate within a week, our weekly
MapReduce processes only a 0.5% sample of emails from
the last 90 days. Because of this, the weekly MapReduce
can sometimes fail to create a template for small clusters of
emails that have been sampled below Juicer’s k-anonymity
threshold, which is adjusted conservatively to the sample
rate, i.e. substantially larger than 0.5% of k. The offline
implementation of Juicer trades some loss in recall of tem-
plates with few observed emails for lower latency in discov-
ering more popular templates. For comparison, we ran a
MapReduce job over 100% of emails from the last 90 days —
while this job discovered 6 times more templates compared
to the weekly job, it took nearly a month to complete. This
was both prohibitively expensive and resulted in an unde-
sirably high latency for discovering templates.

Efficiency Lastly, it is straightforward to observe that
the MapReduce used to compute Juicer templates redun-
dantly processes the same emails week after week until they
age out of the 90 day window. The lack of state between ex-
ecutions of the weekly MapReduce means that the only way
to refine existing templates and discover new ones, while
respecting data retention limits, is to re-cluster candidate
emails.

We note that some of these limitations are particular to
Juicer and are not fundamental to the offline approach to
template induction. For instance, we considered an incre-
mental MapReduce approach in which the Mapper would
discard emails that matched an existing template in the key-
value store. While this would speed up the Shuffle and Re-
duce phases, this would have very little impact on the Map
phase (which is a significant portion of the overall time).
This approach would have led to some improvements in ef-
ficiency, but no significant improvements to latency, and no
improvements to recall. Instead of pursuing designs based
on an incremental MapReduce job that might address some
of these problems, we instead chose to address all these
shortcomings with a fully online system, described in the
next section.

4. Crusher

In Section 3, we described Juicer’s architecture, in which
emails are clustered and templates are generated by a weekly
MapReduce. In this section, we describe an alternate online
approach in which emails are clustered and templates are
generated continuously. The online approach, implemented
in a system we call Crusher, overcomes many of the limi-
tations of the offline approach. We begin by outlining the

design considerations of our online approach and then de-
scribe Crusher’s architecture.

4.1 Design Considerations

Here, we outline the design considerations that motivated
Crusher’s architecture.

Scale It is estimated that hundreds of billions of emails
are sent every day [21, 31], leading to millions of emails
being received by Gmail every second. Crusher should be
able to handle this volume of traffic. An implicit goal is
to intelligently manage Crusher’s storage footprint so that
template induction does not require us to maintain a copy
of every email in the Gmail corpus.

Latency of Template Induction Crusher should form
templates as quickly as possible. Ideally, as soon as an email
cluster satisfies the k-anonymity threshold, Crusher should
be able to induce a corresponding template. Note that the
offline approach outlined in Section 3 has a delay on the
order of a week.

Privacy When processing email, preserving privacy is
paramount. An email cluster should only ever be processed
if it satisfies the k-anonymity property. Moreover, Crusher
must guarantee that no engineer has the ability to view any
emails at any time.

Skew The majority of emails found in the wild are
machine-generated emails sent from a business to their con-
sumers [5, 26, 31]. The number of emails sent by each sender
is highly skewed—a small number of senders account for
a disproportionately large fraction of all emails. Crusher
should handle this skew. In addition to implications for
load-balancing and load hot-spots, the skew also presents
challenges for efficiently inducing templates for relatively
low-volume senders

Fault Tolerance Crusher is a fully online system, so
machine failures are inevitable. Crusher should be able to
handle these machine failures gracefully.

Annotation Latency The JuicerAnnotator, a key com-
ponent of Juicer and Crusher, lives inside the Annotation
Service and is called for each incoming email. The Anno-
tation Service has strict latency requirements, and there-
fore the JuicerAnnotator has a very limited amount of time
(computation or communication) available to spend on each
email.

Template Re-induction As discussed in Section 2, the
quality of a template induced from a cluster of emails de-
pends on the recency of the emails in the cluster and its
size. Crusher should allow for templates to be iteratively
re-induced from clusters as they grow over time.

4.2 Architecture Overview

We now describe the Crusher architecture, which is il-
lustrated in Figure 3. As with Juicer, emails are initially
sent to the Annotation Service and processed by the Juicer-
Annotator. Upon receiving an email, the JuicerAnnotator
computes the email’s three MinHash values. As with Juicer,
it then attempts to fetch the template corresponding to any
of these values from the external key-value store. As 90%
of email traffic is machine-generated, most template lookups
are successful. If the corresponding template exists, then the
JuicerAnnotator uses the template to annotate the email.
The Annotation Service then forwards the annotated email
to an external database of annotated emails.
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With Crusher (unlike with Juicer), the JuicerAnnotator
also forwards the email to an online clustering service
and then begins processing the next email immediately. It
does not wait for a response from the clustering service.
This “fire-and-forget” approach allows the JuicerAnnotator
to meet the strict latency requirements imposed by the An-
notation Service.

The clustering service is composed of a set of clustering
servers. Clustering servers are responsible for clustering to-
gether emails with the same MinHash and for forming a tem-
plate from an email cluster once it satisfies the k-anonymity
threshold. Clustering servers persist emails and templates in
an external templates Bigtable [17]. We first describe the
schema of the templates Bigtable and then describe how
clustering servers operate.

4.3 Templates Bigtable

The schema of the templates Bigtable is illustrated in
Figure 4. Every row of the templates Bigtable is keyed by
a MinHash and corresponds to a single email cluster and
corresponding (potential) template. For example, Figure 4
shows two email clusters with MinHash 42 and 9001.

Emails are stored in the email column family, and every
email is assigned a unique email ID that is used as the col-
umn name. For example, Figure 4 shows three emails "Dear
Ava", "To Ava", and "Dear Bob" with IDs 100, 200, and
300 respectively. Email 100 and 300 have MinHash 42, and
email "To Ava" has MinHash 9001.

Templates are stored in a single column named template
in the template column family. In Figure 4, row 42 has a
template induced from emails 100 and 300. Row 9001 does
not yet have a template, which is possible if the email cluster
does not yet satisfy the k-anonymity requirement.

In addition to the template and email column families,
the templates Bigtable also includes a column family named
user that is used to check whether an email cluster satisfies
the k-anonymity threshold. This is a performance optimiza-
tion that is described below. Consider an email with email
ID e and MinHash h, sent to a recipient with user ID u.
The email is stored in row h and column e of column family
email, and an empty string is stored in row h and column
u of column family user. For example, in Figure 4, row 42
has entries for user 40 (Ava) and user 50 (Bob). Similarly,
row 9001 has an entry for user 40.

Note that for a given row in the templates Bigtable, the
number of entries in the user column family is precisely the

number of unique recipients for the email cluster. Thus, a
clustering server can check whether an email cluster satis-
fies the k-anonymity property by counting the number of
entries in the cluster’s user column family. Checking the
k-anonymity threshold is performed frequently, so we ap-
ply a number of optimizations including client-side caching
of threshold check results and pinning required Bigtable
columns in memory. In addition to the k-anonymity thresh-
old each row also has a maximum row size threshold which
applies after the k-anonymity threshold is met. This allows
recent emails to be stored as older emails expire, ensuring a
fresh set of emails for use during template re-induction, and
also bounds maximum row size. Checking whether the max-
imum row size has been reached uses similar optimizations
to the k-anonymity threshold check.

Also note that we apply a time-to-live (TTL) on entries
in the templates Bigtable. If an entry of the Bigtable is
older than the TTL, it is automatically deleted.? This TTL
limits the storage footprint of the templates Bigtable and
is a key component of template re-induction, described in
more detail in the next subsection.

4.4 Clustering Service

When a clustering server receives an email for a partic-
ular MinHash h, it first checks a cached set of MinHash
values called the full template cache. The full template
cache stores a subset of the MinHash values for which a
template has been induced and for which the maximum per-
mitted number of emails have been stored in the templates
Bigtable. That is, if MinHash & is in the full template cache,
then there exists a template for email cluster h, and the
maximum permitted number of emails have been stored in
row h. If h is not in the template cache, then there may or
may not exist a template in the templates Bigtable. The
full template cache is implemented as a bounded-size LRU
cache with per-element TTLs.

If a clustering server finds h in the full template cache,
then it simply ignores the email. Otherwise, it checks the
email count for minhash h. If h exceeds the maximum per-
mitted email count it updates the full template cache and
ignores the email, otherwise it stores the email in the email
column family of row h in the Bigtable and updates the user
column family. It then fetches two things from the Bigtable:
the existence of a template in row h, and the number of en-
tries in the user column family of row h.

If a template exists in row h, then the clustering server
checks its creation time to see if it is eligible for re-induction.
Otherwise, the clustering server uses the user counts to check
whether the email cluster satisfies the k-anonymity thresh-
old. If the template is not eligible for re-induction or the k-
anonymity threshold is not met, we are done—the clustering
server stops processing the email. Otherwise, the clustering
server fetches all of the emails in row h, re-checks the k-
anonymity threshold, and invokes the UDCAs to compute a
template. It then stores the template in the template col-
umn family of row h. Pseudocode for a clustering server is
given in Algorithm 2. Note that over time, entries in the
templates Bigtable and entries in the full template cache
exceed their TTL and are removed. This leads to periodic
template re-induction.

2In practice the time for which we store the email is informed
by a combination of applicable regulations, business policies,
and the cost of temporary storage.
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Figure 4: templates Bigtable schema.

Algorithm 2: Crusher clustering server pseudocode.

1 Input: The minimum number of users k and
maximum number of emails S per template. The
maximum age of a template A.

Function ProcessEmail (email m):

hashes [h1, ha, hg] < MINHASH(m)

foreach h € [h1, ha, hs] do
‘ CheckTemplateEligibility(m, h)

end

Function CheckTemplateEligibility(m, h):

if A in full template cache then
‘ return

10 Update row h of templates Bigtable with m

/* s is the number of emails */

/* t is whether a template exists */

/* m is the number of users */

11 Fetch s, t, n from templates Bigtable

12 if n > k and not ¢t then
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/* Induce a template. */
13 ‘ FormTemplate (h)
14 if n > k and t and age(t) > A then
/* Re-induce a template. */
15 ‘ FormTemplate (h)
16 if n > k and s > S then
17 ‘ Update full template cache with h
18 Function FormTemplate(h):
19 Fetch emails for row h from templates Bigtable

20 Re-check k-anonymity thresholds and invoke
UDCASs to form template from emails
21 Insert the template into templates Bigtable

To take advantage of the multi-core machines on which

clustering servers run, we could naively spawn multiple threads,

each responsible for processing a single email. However, this
naive approach to parallelizing a clustering server is subop-
timal. To see why, we consider the operation of a clus-
tering server as a composition of two main steps: the in-
vocation of CheckTemplateEligibility and the invocation
of FormTemplate. CheckTemplateEligibility persists an
email in the Bigtable and fetches data from the Bigtable,
whereas FormTemplate computes a template from an email
cluster. Storing and fetching data from the Bigtable is an
1/0-bound operation, while executing UDCAs and comput-
ing templates is a memory- and CPU-bound operation. We
use a SEDA architecture [36] to extract more parallelism
from a clustering server by executing these two steps on two
separate thread pools and by tuning the number of threads
in each thread pool separately. Both thread pools perform
admission control to avoid exhausting a server’s CPU, mem-
ory, or network resources. Thus, an overloaded clustering
server may selectively drop emails.

Periodically, the templates stored in the Bigtable are mi-
grated to the key-value store that is read by the Juicer-
Annotator. In theory, we could eliminate this extra tem-
plate migration step, and the JuicerAnnotator could use the
Bigtable directly. This would make a new template avail-
able in the Annotation Service as soon as it meets the k-
anonymity threshold. However, the Annotation Service cur-
rently requires the use of the key-value store in order to sup-
port debugging and development tools for other annotators.
Apart from the delays introduced by the constraints imposed
by the Annotation Service, emails can be annotated with a
template ID as soon as the corresponding cluster satisfies
the k-anonymity threshold. This is usually on the order of
a few minutes compared to delays of a week or longer that
is present in the offline design.

4.5 Discussion

Our Crusher design overcomes many of the limitations of
our existing Juicer design and satisfies many of the require-
ments outlined in Section 4.1.

Scale Clustering servers do not coordinate with one
another, so Crusher can scale to handle a large volume
of emails by increasing the number of clustering servers.
The only point of contention in Crusher is the templates
Bigtable, but fortunately Bigtable can scale to petabytes of
data and thousands of machines [17].

Latency of Template Induction Crusher forms a
template from a cluster of emails as soon as the cluster sat-
isfies the k-anonymity threshold.

Privacy By construction, a clustering server will only
ever form a template from an email cluster if the email clus-
ter satisfies the k-anonymity threshold. The TTL on the
templates Bigtable also ensures that emails are not per-
sisted indefinitely. Data are encrypted, and can only be
accessed by a role account that is limited to running the
Crusher binary built from code that is reviewed, submitted,
and auditable. Nobody involved with the project had access
to visually inspect any of the data.

Skew As noted earlier, a small number of businesses
send a disproportionately large fraction of emails. As a re-
sult, a small number of templates account for a relatively
large fraction of emails. Crusher handles this skew by caching
frequently accessed template metadata in the clustering servers
to reduce Bigtable reads.

Fault Tolerance Crusher inherits the fault tolerance
of the systems it is built on (e.g., the Annotation Service,
Bigtable, the External Database). The only Crusher com-
ponent that does not inherit fault tolerance is the clustering
service. Fortunately, Crusher does not need to implement
any additional mechanisms to ensure fault tolerance for the
clustering service because it is naturally fault tolerant. On-
line email clustering is naturally tolerant to email loss be-
cause an email template can be formed from any represen-
tative sample of emails instantiated from the template. The



quality of the template increases with the number of emails,
but forming a template from every email is prohibitively ex-
pensive and largely unnecessary due to diminishing returns.
Thus, failed clustering servers can simply be restarted with-
out the need to recover any buffered emails. A clustering
server failure simply changes the sample of emails used to
instantiate a template. Note that Juicer similarly does not
process every email, only a small sample.

Annotation Latency The JuicerAnnotator sends fire-
and-forget requests to the clustering service, so that the la-
tency of the JuicerAnnotator is completely independent of
the latency of the clustering service. This helps keep the
latency of the JuicerAnnotator in the Annotation Service
low.

Template Re-induction Crusher uses TTLs on the
templates Bigtable and on the full templates cache to peri-
odically re-induce templates.

S.  STREAM PROCESSING JUICER

Before we designed and implemented Crusher, we consid-
ered a different (and arguably more natural) approach to
converting Juicer’s batch MapReduce job to an online job:
stream processing systems.

Stream processing systems [6, 15, 24, 28, 35, 38] generalize
data-parallel batch processing jobs that operate over fixed,
finite data sets to data-parallel stream processing jobs that
operate over streaming, potentially infinite data streams.
At a glance, these systems appear to be the perfect tool
to overcome the limitations of Juicer’s offline approach to
template induction. All we’d have to do is rewrite our weekly
MapReduce job using a stream processing system, right?

Unfortunately not. We developed several prototype im-
plementations that focused on replacing the weekly MapRe-
duce job with a stream processing job. Through our expe-
rience, we found that many existing stream processing sys-
tems lack the features required to satisfy all of our system
requirements. In particular, we found that many stream pro-
cessing systems lack the complex windowing and triggering
semantics required to implement Crusher efficiently. For-
tunately, many stream processing systems provide an API
to streaming operators that allows them access to persis-
tent state across invocations. This API makes it possible to
simulate complex windowing and triggering semantics, but
we found that while it’s possible, it is often inefficient. We
hope that this section motivates future research on stream
processing systems that will enable a broader range of real-
world streaming applications like Crusher.

5.1 Windows and Triggers

Stream processing systems allow developers to discretize
infinite data streams into finite groups of data called win-
dows. Stream processing systems typically support some
subset of the following four types of windows:

e Global windows. With global windowing, every stream
element is assigned to a single global window.

e Fized windows. Fixed windows are disjoint equally-
sized windows in which one window begins the moment
the previous window ends (e.g., hourly windows that
begin every hour).

e Sliding windows. Sliding windows are equally-sized
windows that are not necessarily disjoint. One sliding

window begins after some fixed delay after the previ-
ous window begins (e.g., hourly windows every thirty
minutes).

e Session windows. With session windows, stream el-
ements are grouped in a given window such that no
two consecutive elements are separated by more than
a fixed duration (e.g., five minutes).

Many stream processing systems also allow developers to
trigger the materialization of a growing window, allowing it
to be processed by downstream operators more often than
just at the end of the window. The triggers supported by
existing stream processing systems are typically based on
count or time, either triggering a window after the first n
entries have been received, after every n entries have been
received, or after some time after the end of the window.
The data associated with a window is not garbage collected
until after the window has been triggered for the last time.

We found that existing windows and triggers are insuffi-
ciently expressive to implement the clustering service natu-
rally and efficiently. Ideally, we could group emails together
by their MinHash, window them into email clusters, and
trigger a window as soon as its email cluster satisfies the
k-anonymity threshold. Unfortunately, while most stream
processing systems support triggers based on count (e.g.,
trigger a window after k emails), we did not find any ex-
isting stream processing systems that include built-in trig-
gers based on distinct counts (e.g., trigger a window after k
unique users).

This makes it challenging to implement the clustering ser-
vice using windows and triggers. For example, consider the
pseudocode implementation of the clustering service shown
in Figure 5. The implementation begins with a stream of
emails called emails. It then uses the ExtractMinHashes
function to map every email m to the pairs (hi,m), (h2,m),
(hs,m) where hi,ha,hs are the MinHash values of m. It
then windows this stream into fixed n day windows for some
constant n, triggering the window (with accumulation) ev-
ery k emails. Finally, it groups emails by their MinHash
and forms a template from an email cluster if it satisfies the
k-anonymity threshold.

This implementation has a number of serious limitations.
First, the window is triggered only every k emails and at
the end of every n days. Imagine that £ = 1,000 and that
1,000 emails arrive for a particular email cluster with only
999 unique users. The trigger is fired, but the emails do not
satisfy the k-anonymity threshold because there are only 999
unique users. Then, imagine the 1,001%" email arrives with
the 1,000*™ unique user. At this point, the k-anonymity
threshold is met, so a template could be formed, but the
trigger will not fire again until 999 more emails arrive or
until n days have elapsed. Decreasing n decreases the up-
per bound on this template induction delay, but if n is too
small, then some slowly accumulating email clusters will be
prematurely garbage-collected before the clustering service
has the opportunity to form a template.

Alternatively, instead of triggering the n-day windows ev-
ery k emails, we could trigger them every m emails for some
small value of m (e.g., 1 or 2). With this approach, there is
less delay between when a cluster satisfies the k-anonymity
threshold and when a template is formed from the cluster.
However, this approach triggers the window unnecessarily
often, leading to the email cluster being transferred through



emails
.FlatMap (ExtractMinHashes)
.FixedWindows (Days(n)),
.TriggerWithAccumulation(Repeat (Count (k)))
.GroupByKey ()
.Filter (CheckKAnonymity)
.Map (FormTemplate)

Figure 5: Pseudocode implementations of the clustering
service using fixed windows.

the stream processing job significantly more than is nec-
essary. For example, if &k = 1,000 and m = 1, then the
email cluster is triggered three orders of magnitude more
often. Moreover, even after an email cluster satisfies the k-
anonymity threshold, it will continue to trigger after every
m emails enter the cluster.

As another alternative, we can eschew the n-day fixed
windows for n-hour session windows. Now, if the 1,001
email is sent to the 1,000"™® unique user, the clustering ser-
vice will only have to wait up to n hours to form a template.
However, this implementation has its own limitations. For
example, if 500 emails arrive at one point in time and 500
more arrive n hours and 1 minute later, this implementation
will not attempt to form a template from these 1,000 emails
even though they may satisfy the k-anonymity threshold.

While these are just a few possible implementations of the
clustering service using a stream processing system, they
are emblematic of the overall inexpressiveness of existing
windowing and triggering semantics. Also note that some
stream processing systems, like Apache Flink [15], allow de-
velopers to write custom triggers, but the custom trigger
APIs are experimental or unstable.

This seems to suggest that stream processing systems
should support more sophisticated forms of windowing and
triggering. This would enable applications like Crusher.
However, there is a fundamental tension between expres-
siveness and complexity. More sophisticated windowing and
triggering semantics are both more challenging for a user
to understand and more difficult for a system developer to
implement. Our conversations with engineers working on
stream processing engines within Google suggest that find-
ing the right balance between expressiveness and complexity
is still an ongoing area of investigation.

5.2 Stateful Processing

Because complex windows and triggers are largely unsup-
ported, developers must instead turn to alternative APIs.
In particular, stateful processing can act as a substitute for
complex windows and triggers. With stateful processing,
streaming operators are given access to per-key persistent
state that they can read and update whenever they process
a stream element.

We can use persistent state to implement a Crusher vari-
ant as follows. First, we group emails together by MinHash
and stream them into a stateful map operator. The stateful
map operator maintains two pieces of state: (1) the set of
emails it has received thus far, dubbed emails and (2) the
corresponding set of unique email recipients, dubbed users.
When the stateful map operator receives an email m with
recipient r, it adds m to emails and r to users. It then
checks to see if users is large enough to satisfy the privacy
threshold. If it is, then the stateful map operator forms a
template from the set of emails.

In our experience, we found that many (but not all) exist-
ing stream processing systems lack the features that enable
this design to be implemented efficiently. Some stream pro-
cessing systems, like Spark Streaming and Apache Storm,
treat per-key state as an opaque blob, only allowing the
state to be persisted by writing the blob in its entirety. This
approach to state management works well for stream pro-
cessing jobs with a small amount of state, but it performs
poorly for jobs with large state. For example, imagine that
we implemented our Crusher design using this approach to
state management. In order to persist emails, our stateful
map operator would read and re-write emails in its entirety,
even if only a handful of new emails have been inserted since
the last time emails was persisted.

Other stream processing systems like Apache Flink and
Apache Beam [7] support richer state APIs that allow state-
ful operators to manipulate state at finer granularities. For
example, Flink and Beam allow state to be modeled as a
set, a bag, a list, etc. Using these state APIs, we can model
emails and users as sets and can efficiently add elements to
these sets without having to re-write them in their entirety.

However, even these richer APIs can be too restrictive,
not allowing for some performance optimizations. For exam-
ple, recall the templates Bigtable, presented in Section 4.
The email and template column families were only partially
cached in memory because they were large and accessed in-
frequently. The user column family, on the other hand, was
cached entirely in memory because it was small and accessed
frequently. Storm, Flink, Samza, and Beam allow state to
be modeled at a finer granularity than a blob, but they
don’t support features that enable a developer to perform
this sort of lower-level performance tuning. Note that these
stream processing systems do automatically perform some
storage optimizations (e.g., caching small objects), but they
do not provide application developers the ability to perform
fine-grained optimizations for performance sensitive appli-
cations.

Note that some stream processing systems like Apache
Storm and Apache Flink allow a developer to implement
custom state backends. This functionality allows a developer
to customize the way that state is persisted, tailoring it to
meet the needs of a particular application. Though this
functionality makes it possible to implement persistent state
efficiently, it doesn’t make it convenient. Implementing and
debugging a custom state backend is onerous and detracts
from the convenience of using a stream processing system.

Because existing windowing and triggering functionality
is insufficient to implement a Crusher variant, alternative
APIs, like efficient state management, are required but largely
lacking from existing stream processing systems. We argue
that many applications would benefit from improved sup-
port for state management.

6. EVALUATION

In this section, we evaluate Crusher on production data
and on a synthetic workload. We also compare Crusher
against a variant of Juicer written using a stream processing
system. In particular, we answer the following questions:

Crusher in the Real World. How does the resource
usage of Crusher compare to the resource usage of Juicer?
Do we discover more templates with Crusher without having
to spend proportionately more resources? Do the templates



discovered by Crusher result in more emails being anno-
tated?

Crusher Performance Capabilities. How well does
Crusher scale with the number of clustering servers? How
well does it handle data skew? How much does a clustering
server’s SEDA architecture improve performance?

Crusher vs Stream Processing Juicer. How does
the performance of Crusher compare to Juicer variants im-
plemented using a stream processing system?

6.1 Crusher in the Real World

Crusher is currently run in production alongside the exist-
ing Juicer system as we transition away from offline template
induction entirely. Emails are sent to Crusher for cluster-
ing and potential template induction (if the k-anonymity
threshold is met). In this fashion, we initialize Crusher with
a known set of templates without the need to run Crusher
for 90 days before the systems converge. At the time of
writing, Crusher is in production running on 10% of traffic.

Table 1 compares the resource utilization and output of
Juicer and Crusher during a one week period. Juicer’s Map-
Reduce discovered 440,933 templates in addition to those
discovered by the previous week’s MapReduce. During this
same week, Crusher discovered 2,085,296 templates which
were added to the key-value store as they were discovered
and can be used to annotate emails within minutes of tem-
plate formation. Crusher discovered far more new templates
than Juicer because Juicer is hampered by the fact that its k-
anonymity threshold is adjusted quite conservatively to the
0.5% sampling rate to cope with the perils of small sample
sizes. Since the number of recipients of a given template fol-
lows a Zipfian distribution, there are many templates that
clear the k-anonymity threshold but do not clear the ad-
justed value of k employed by Juicer. Figure 6 shows that
the additional templates discovered by Crusher resulted in
approximately 10% more emails being annotated over the
course of a recent week.

Juicer’s MapReduce used resources roughly equivalent to
5,000 CPUs with 19GB of memory each running for a day.
For Crusher, in addition to the resources used by the clus-
tering servers, we also show the resources required to serve
the underlying templates Bigtable. The usage presented is
the average over the week and is an overestimate due to the
difficulty of separating some other ancillary Bigtable traffic.
Crusher demonstrates a reduction of 58% CPU time, 93%
memory, and 90% disk relative to Juicer while discovering
and annotating more templates with lower latency.

6.2 Crusher Performance Capabilities

Synthetic Workload In this subsection, we evaluate
Crusher’s clustering service using a synthetic workload. The
synthetic workload employs 50 client machines, each run-
ning 40 client threads. Initially, every client thread sends 10
emails per second to the clustering service. Over the course
of 13 minutes, every client thread increases its sending rate
by 0.15 emails per second per second. Thus, in aggregate,
the clients generate 20,000 emails per second at the begin-
ning of the workload and 254,000 emails per second at the
end of the workload.

Clients send randomly generated synthetic emails. When
a client generates an email, it first samples an integer from
a Zipfian distribution with (tunable) parameter «. This in-
teger acts as the email’s template ID and is embedded in

< ) ) )
@r, @r,, or,, ©r,

9, < <«
20y, o0, o0,
Zg 2% 2, 25 2 2, EN

Figure 6: Incremental number of annotated emails by
Crusher vs. Juicer. The y-axis is linear, and units have
been removed to avoid disclosing Gmail traffic data. The red
shading represents emails annotated by Juicer and Crusher
while the blue shading represents Crusher alone. The mag-
nitude of the annotation increase averages 10%

the email. When a clustering server receives an email with
an embedded template ID, it bypasses its normal MinHash
computation and instead uses the embedded ID directly.
Drawing template IDs from a Zipfian distribution simulates
the skewed nature of real-world emails. Next, a client ran-
domly generates a piece of HTML for the body of the email.
The size of the email is drawn from a Gaussian distribution
with a mean of 10KB and a standard deviation of 2KB. If
the email is larger than 30 KB, it is trimmed to 30KB.

Recall that the clustering service processes at most S
emails per template over the email TTL interval. We ap-
proximate this behavior by imposing the restriction that a
client sends at most 7" emails for a given template ID, for a
tunable parameter T

Scalability We evaluate the scalability of the cluster-
ing service by measuring its peak throughput against our
synthetic workload when deployed with various numbers of
servers. For this experiment, we set T = 2,000,000 and set
a = 1.1. Moreover, the two thread pools employed by the
clustering servers (i.e. the one that checks the k-anonymity
threshold and the one that forms templates, see Section 4.4)
are limited to 480 and 8 threads. The k-anonymity thresh-
old is set to k = 1,000. The results of this benchmark are
shown in Figure 7a.

A single clustering server achieves a throughput of roughly
25,000 emails per second. This throughput increases lin-
early with the number of servers for up to roughly 8 servers.
It then increases sublinearly and approaches an upper bound
of roughly 250, 000 emails per second. This is the peak client
load generated by our synthetic benchmark, so the cluster-
ing service cannot exceed this upper bound. At this peak
throughput, the system can process 21.6 billion emails per
day. In production, 80% to 90% of emails have a known
template and most of these will be served from directly the
key-value store and not be processed by the clustering ser-
vice. This allows Crusher to support 100 to 200 billion in-
coming emails a day. We expect to be able to scale further
by provisioning more resources for the templates Bigtable.

Tolerance to Skew Next, we evaluate the clustering
service’s ability to tolerate the skewed nature of emails. To
do so, we run an eight-machine clustering service deploy-
ment against our synthetic benchmark and vary the Zipfian
parameter «. All other parameters are unchanged from the
previous experiment. The results are shown in Figure 7b.



Table 1: Weekly resource utilization of a typical Juicer MapReduce and Crusher.

CPU-hours | memory (GB-hours) | disk (TB) | # of templates | template delay
Juicer 118,405 2,244,807 332.19 140,933 T week
Crusher 2,085,296 minutes
Clustering Service 11,529 87,149 0.00
Templates Bigtable (average) 38,628 67,719 33.06
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(a) Peak throughput vs number of clus-
tering servers. Standard deviations are
shaded red.
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(b) Peak throughput vs data skew. Skinny
vertical bars show standard deviations.
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(¢) Peak throughput vs threading configu-
ration. Skinny vertical bars show standard
deviations. Note log scale y-axis.

Figure 7: Crusher evaluation.

As the Zipfian parameter « increases, the skew of the
email distribution increases and a larger number of emails
are generated for a smaller number of templates. Fortu-
nately, data skew does not hurt the throughput of the clus-
tering; in fact, it improves it! The clustering service achieves
a peak throughput of roughly 83,000 emails per second for
a = 1.001, roughly 102,000 for = 1.01, and roughly
179,000 for o = 1.1. For all larger values of a, the peak
throughput is approximately 250, 000 emails per second (the
maximum client load).

Data skew positively correlates with peak throughput due
to template caching. Once a clustering server caches a tem-
plate, it can process subsequent emails matching this tem-
plate directly from cache. The clustering server does not
have to contact the templates Bigtable at all. Thus, when
the data skew increases, the fraction of emails that are served
from cache increases, and the overall throughput of the clus-
tering service increases.

SEDA Architecture Recall that every clustering server
employs two thread pools. The first thread pool is responsi-
ble for computing MinHash values, for storing emails in the
templates Bigtable, and for checking whether an email clus-
ter satisfies the k-anonymity threshold. The second thread
pool is responsible for forming templates from email clusters
that do satisfy the k-anonymity threshold. The first thread
pool is mostly I/O-bound, while the second thread pool is
both CPU- and memory-intensive.

We now evaluate the effect of separating these two re-
sponsibilities across two thread pools using a SEDA archi-
tecture. We run an eight-machine clustering service deploy-
ment against our synthetic workload with @ = 1.1 and all
other parameters unchanged from the previous two exper-
iments. We vary the number of threads in the first and
second thread pool and measure the peak throughput. The
results are shown in Figure 7c. Note that throughput is
shown on a log scale.

Without dividing work between two thread pools, a clus-
tering server would be forced to check the k-anonymity thresh-
old and form templates with a fixed number of threads.

Moreover, this fixed number of threads cannot be too large
or else the number of threads concurrently forming tem-
plates becomes large enough to exhaust a machine’s mem-
ory capacity. To simulate clustering servers that use a small
and fixed number of threads, we limit both thread pools
to 1, 2, 4, and 8 threads. The clustering service achieves
throughputs of 543, 1046, 2385, and 4765 emails per second
respectively. Relaxing the restriction of a small fixed num-
ber of threads, we achieve roughly 180,000 emails per second
with 480 threads in the first thread pool and 8 threads in
the second. This is a two order of magnitude increase in
throughput.

6.3 Crusher vs Stream Processing Juicer

While performance benchmarking of different streaming
systems on template induction is an explicit non-goal of this
paper, we briefly present performance results for the sim-
ple implementation in Figure 5. The prototype implemen-
tation was built using Apache Beam-like APIs leveraging
the MillWheel [6] runtime. Importantly from a performance
standpoint, the MillWheel runtime is designed to provide
fault-tolerant, exactly-once semantics, while Crusher explic-
itly tolerates failures in both email storage and template in-
duction in order to maximize throughput. Our goal in this
section is to demonstrate that Crusher is clearly competi-
tive with an alternative implementation based on a mature
stream processing framework.

Figure 8 reuses the synthetic load generator from Figure 7,
writes results to Bigtable as in previous performance evalu-
ations, and scales the number of MillWheel servers. Given
the simplicity of our implementation, it is no surprise that
the peak throughput is significantly lower for our streaming
implementation than for Crusher. Experts in stream pro-
cessing systems would likely be able to optimize our imple-
mentation to significantly improve throughput but closing
the nearly 30x performance gap entirely would likely require
a significant rewrite of the application and new features in
the underlying engine.



The superior throughput of Crusher relative to our stream-
ing implementation is largely attributable to three reasons:

e Crusher optimizes the common task of counting unique
users using client-side caching and memory-mapped
Bigtable columns. Implementing a similar optimiza-
tion in the streaming prototype is not straightforward
without changes to the underlying engine.

o The MillWheel query plan maps each execution stage
to a separate Bigtable, increasing the number of disk
writes required and reducing locality. This is a conse-
quence of the runtime needing to support exactly-once
semantics. Crusher reuses a single Bigtable.

e Crusher’s SEDA architecture provides two orders of
magnitude increase in throughput, cf. Figure 7c. While
we allowed each MillWheel server to auto-scale its re-
source consumption without limit, the internal thread-
ing configuration was not exposed to our application.

In retrospect, the performance gap between our imple-
mentation on a streaming engine and Crusher is not surpris-
ing. Our observations are consistent with arguments made
previously in [32] that for applications that are sufficiently
different from the general stream processing setting (dash-
boarding and alerting over moving windows) a specialized
implementation might offer a large performance advantage.
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throughput (emails per second)

2000

0 10 20 30 40 50
number of servers

Figure 8: Peak throughput vs number of MillWheel servers
using the simple streaming implementation from Figure 5.
Standard deviations are shaded red.

7. RELATED WORK

Template Induction Template induction is the tech-
nique of identifying a skeleton of repeated content based on
previously seen examples that are similar to each other. It
has been widely used in information extraction over struc-
tured web pages [10, 25]. For emails, multiple algorithms
for template induction have been described [5, 11, 21] along
with applications in information extraction [3, 20, 31], email
threading [5], and hierarchical classification [37]. This paper
uses techniques previously described in the literature [31],
but is the first description of an online template induction
system.

Stream Processing Systems The data management
literature contains nearly two decades of work on stream
processing systems. Early systems like Aurora [2, 12], Bore-
alis [1], STREAM [8], and TelegraphCQ [16] laid the ground-
work for complex query processing over large data streams.

Subsequent works have studied query processing abstrac-
tions [9] and also adapted the ideas to MapReduce-style pro-
cessing [18]. Several systems have been built in industry in-
cluding Google MillWheel [6], Spark Streaming [38], Oracle
Stream Analytics [29] (which compiles to Spark Streaming),
Apache Storm [35], Apache Flink [15], Apache Heron [24],
Apache Samza [28], Naiad [27], and Spade [23]. Each system
strikes various trade-offs between fault-tolerance, program-
ming paradigm, and scalability [33]. In contrast to these
systems, our system is not a general-purpose streaming en-
gine, but rather a system designed for the specific applica-
tion of processing a large stream of emails to detect tem-
plates. We argue that the balance between expressivity and
performance provided by existing streaming systems, rather
surprisingly, fails to serve this application well.

Data Mining on Streams While the data mining com-
munity has studied several algorithms [19, 22] for mining
high-volume data streams, the focus has been on time-series
data and algorithms for learning sketches. The majority of
the work on mining text streams [4] has focused on detecting
evolving topics on sources like the Twitter postings stream.
Much of this body of work focuses on algorithms and appli-
cations rather than a general purpose system for mining. To
our knowledge, our paper presents the first real-world study
of a streaming system over email for mining templates.

8. CONCLUSION

This paper presents the problem of online email template
induction. While template induction has been studied pre-
viously in the literature, to our knowledge, this is the first
description of a system for template induction in an online
setting. We presented the design and implementation of a
system that performs online template induction on a planet-
scale email service. Experiments on a synthetic workload
show that the system can handle an average throughput
of at least 250,000 emails per second with about 20 servers.
The system is in production at 10% of traffic as of the time of
writing this paper. Our experiments show that in addition
to decreasing the latency of template discovery from days
to minutes, Crusher discovers more templates while deliv-
ering resource savings of 53% CPU time and 93% in mem-
ory footprint compared to the batch version implemented
as a MapReduce job. We also discussed reasons why we
were unable to implement Crusher using an existing stream
processing system. A simple prototype implementation of
Juicer using an existing stream processing system with the
same resource footprint produced between 10 to 40 times
lower throughput. We hope that our experience inspires
stream processing system developers to extend APIs to sup-
port novel applications like online template induction.
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