
Compartmentalized Consensus: Agreeing With High Throughput

Anonymous Author(s)

Submission Id: 705

Abstract
Dozens of state machine replication protocols have been

invented that use a myriad of sophisticated techniques to

achieve high throughput (e.g., multi-leader execution, gener-

alization). These techniques are often complex and protocol-

specific. In this paper, we present a simple and generally

applicable technique, dubbed compartmentalization, that re-

volves around decoupling and scaling. We compartmentalize

three existing protocols—MultiPaxos,Mencius, and S-Paxos—

increasing their throughput by as much as 8.3×. In doing so,

we debunk the myth that simple state machine replication

protocols like MultiPaxos cannot achieve high throughput.

Ironically, we find that after compartmentalization, some

sophisticated techniques designed to improve throughput

can actually become throughput bottlenecks.

1 Introduction
Machines can fail. State machine replication protocols like

MultiPaxos [22] and Raft [32] mask these failures by execut-

ing multiple copies, or replicas, of a state machine at once.

Today, state machine replication is ubiquitous. It is hard to

find a strongly consistent distributed system that does not
use some form of state machine replication [1–6, 10, 14–

16, 20, 39].

Due to their importance, dozens of state machine repli-

cation protocols have been invented over the last several

decades. These protocols use a number of sophisticated tech-

niques like multi-leader execution [9, 29, 30], speculative

execution [26, 33, 34], generalization [23, 38], fast paths [24],

and flexible quorums [19, 31] to achieve high throughput,

low latency, or both.

These techniques introduce a considerable amount of com-

plexity. MultiPaxos, one of the oldest and most popular state

machine replication protocols, is notoriously difficult to un-

derstand, and more modern protocols that employ these

sophisticated techniques are more complicated. But if we

want to squeeze out every drop of performance from our

state machine replication protocols, complexity is the price

we have to pay, right?

Actually, no. In this paper, we present a simple and gen-
erally applicable technique to increase the through-
put of a state machine replication protocol. Our tech-
nique can be applied to many existing state machine repli-

cation protocols. In this paper, we apply it to three: Multi-

Paxos [22], Mencius [29], and S-Paxos [13]. Using our tech-

nique we are able to increase MultiPaxos’ throughput from

25,000 commands commands per second to 200,000 com-

mands per second without batching (an 8× improvement)

and from 200,000 commands per second to 900,000 com-

mands per second with batching (a 4.5× improvement). We

achieve similar improvements for Mencius and S-Paxos.

Our technique, which we call compartmentalization,
revolves around two simple ideas: decoupling and scaling.

The insight is that components in existing replication proto-

cols often implement multiple independent functionalities.

This makes the protocols difficult to scale. With compart-

mentalization, we first decouple bottleneck components

into a number of subcomponents, with each subcomponent

implementing a single piece of functionality. We then scale
up the subcomponents that can benefit from scaling.

Take MultiPaxos as an example. A MultiPaxos leader is

traditionally responsible for sequencing commands into a

total order and for communicating with acceptors to reach

consensus on individual commands. Sequencing commands

is fundamentally unscalable; it must be done by a single

leader. Communicating with acceptors however, is embar-

rassingly parallel. With compartmentalization, we disentan-

gle the leader’s responsibilities and divide the leader in two.

Sequencing is performed by a single node, while communi-

cating with acceptors is distributed across multiple nodes.

It is widely believed that simple state machine replication

protocols like MultiPaxos have low throughput. “The leader

in Paxos is a bottleneck that limits throughput” [29]. “It

impairs scalability by placing a disproportionately high load

on the master, which must process more messages than the

other replicas” [30]. “In practice, [MultiPaxos’] performance

is tied to the performance of the leader” [9]. Our technique

of compartmentalization shows that this is a myth.

Simple replication protocols can achieve as high or
higher throughput than more complex protocols that
leverage sophisticated techniques such as multi-leader exe-

cution, generalization, and fast paths. In fact, these sophis-

ticated techniques can sometimes hurt throughput instead
of helping it. Complex protocols can be more difficult to de-

couple and scale, and sophisticated techniques can become

a CPU bottleneck. For example, EPaxos [30] replicas and

Caesar [9] replicas execute directed graphs of state machine

commands in reverse topological order. We find that this

graph processing becomes a CPU bottleneck that prevents

the protocols from achieving the same throughput as our

compartmentalized variant of MultiPaxos.

In summary, we present the following contributions.

• We present a straightforward and generally applica-

ble technique of decoupling and scaling, called com-

partmentalization, that can increase the throughput of

many existing state machine replication protocols.
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• We show how to compartmentalize MultiPaxos, Men-

cius, and S-Paxos. Doing so, we increase MultiPaxos’

throughput 8× without batching and 4.5× with batch-

ing, and achieve similar speedups for the other two

protocols.

• We rebut the widely believed claim that simple state

machine replication protocols like MultiPaxos cannot

achieve high throughput. We show that our technique

enables simple protocols to achieve higher through-

put than more complex protocols that were specially

designed for high throughput

2 Background
2.1 System Model
Throughout the paper, we assume an asynchronous network

model in which messages can be arbitrarily dropped, delayed,

and reordered. We assume machines can fail by crashing but

cannot act maliciously; i.e., we do not consider Byzantine

failures. Every protocol discussed in this paper assumes that

at most f machines can fail for some parameter f .

2.2 Paxos
Consensus is the act of choosing a single value among a set

of proposed values. Paxos [25] is the de facto standard con-

sensus protocol. We assume the reader is familiar with Paxos,

but we pause to review the parts that are most important to

understand for the rest of this paper.

A Paxos deployment that tolerates f faults consists of f +1
proposers and 2f + 1 acceptors, as illustrated in Figure 1.

When a client wants to propose a value, it sends the value to a

proposer p. The proposer then initiates a two-phase protocol.

In Phase 1, p sends Phase 1a messages to at least a majority

of the 2f +1 acceptors. When an acceptor receives a Phase 1a

message, it replies with a Phase 1b message. When the leader

receives Phase 1b messages from a majority of the acceptors,

it begins Phase 2. Phase 1 is illustrated in Figure 1a.
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Figure 1. Paxos communication diagram.

Phase 2 mirrors phase 1. The leader sends Phase 2a mes-

sages to the acceptors, and the acceptors respond with Phase

2b messages. Upon receiving Phase 2b messages from a ma-

jority of the acceptors, the proposed value is considered

chosen, and the leader responds to the client informing it of

the chosen value. Phase 2 is illustrated in Figure 1b.

2.3 MultiPaxos
While consensus is the act of choosing a single value, state
machine replication is the act of choosing a sequence

(a.k.a. log) of values. A state machine replication protocol

manages a number of copies, or replicas, of a deterministic

state machine. Over time, the protocol constructs a growing

log of state machine commands, and replicas execute the

commands in prefix order. By beginning in the same initial

state, and by executing the same commands in the same

order, all state machine replicas are kept in sync. This is

illustrated in Figure 2.
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Figure 2. At time t = 0, no state machine commands are

chosen. At time t = 1 command x is chosen in slot 0. At

times t = 2 and t = 3, commands z and y are chosen in slots

2 and 1. All state machines execute commands x , y, z in log

order.

MultiPaxos is one of the simplest and most widely used

state machine replication protocols. Again, we assume the

reader is familiar with MultiPaxos, but we review the most

salient bits.

MultiPaxos uses one instance of Paxos for every log entry,

choosing the commands in the log one slot at a time. A

MultiPaxos deployment that tolerates f faults consists of

at least f + 1 proposers and 2f + 1 acceptors (like Paxos)

as well as at least f + 1 replicas, as illustrated in Figure 3.

Typically, MultiPaxos is deployed with 2f + 1 servers, with
each server hosting a proposer, an acceptor, and a replica.
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Figure 3. An example execution of MultiPaxos. The leader

is adorned with a crown.

Initially, one of the proposers is elected leader and runs

Phase 1 of Paxos for every single log entry. When a client

wants to propose a state machine command, it sends the
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command to the leader. The leader assigns the command a

log entry i and then runs Phase 2 of Paxos to get the value

chosen in entry i . The leader assigns log entries to commands

in increasing order. The first received command is put in

entry 0, the next command in entry 1, the next command in

entry 2, and so on. Once the leader learns that a command

has been chosen in a given log entry, it informs the replicas.

Replicas insert chosen commands into their logs and execute

the logs in prefix order.

Though every replica executes every command, for any

given state machine command x , only one replica needs to

send the result of executing x back to the client. For example,

log entries can be round-robin partitioned across the replicas.

With n replicas for example, replica ri returns results for log
entries j where j mod n ≡ i .

3 MultiPaxos
In this section, we showhow to increaseMultiPaxos’ through-

put using our technique of compartmentalization. We begin

with the basic MultiPaxos protocol that achieves a through-

put of 25,000 commands per second and repeatedly apply

our technique until we get a protocol capable of processing

200,000 commands per second. We then introduce batching

and again decouple and scale to get a protocol that can pro-

cess 900,000 commands per second. Full experimental details

are given in Section 7.

In addition to describing how to decouple and scale Mul-

tiPaxos, we also describe why. In particular, we provide a

number of generally applicable heuristics that protocol devel-

opers can use to reason about how to best compartmentalize

their own protocols.

3.1 Step 1: Proxy Leaders
MultiPaxos’ throughput is bottlenecked by the leader. Refer

again to Figure 3. To process a single state machine command

from a client, the leader must receive a message from the

client, send at least f + 1 Phase 2a messages to the acceptors,

receive at least f + 1 Phase 2b messages from the acceptors,

and send at least f + 1 messages to the replicas. Thus, the

leader sends and receives a total of at least 3f + 4 messages.

Every acceptor on the other hand processes only 2 messages,

and every replica processes either 1 or 2. Because every state

machine command goes through the leader, and because

the leader has to perform disproportionately more work

than every other component, the leader is the throughput

bottleneck.

To alleviate this bottleneck, we first decouple the leader.
To do so, we note that a MultiPaxos leader has two jobs.

First, it sequences commands by assigning each command a

log entry. Log entry 0, then 1, then 2, and so on. Second, it

sends Phase 2a messages, collects Phase 2b responses, and

broadcasts chosen values to the replicas.

Historically, these two responsibilities have both fallen on

the leader, but this is not fundamental. We instead decouple

the two responsibilities. We introduce a set of at least f + 1
proxy leaders, as shown in Figure 4. The leader is respon-

sible for sequencing commands, while the proxy leaders are

responsible for getting commands chosen and broadcasting

chosen commands to the replicas.

c1

c2

c3

p1

p2

l1

l2

l3

a1

a2

a3

r1

r2

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

2f + 1
Acceptors

f + 1
Replicas

1

2

3

3

4

4

5

5

6

Figure 4. An example execution of MultiPaxos with three

proxy leaders. Throughput the paper, nodes and messages

that were not present in previous iterations of the protocol

are highlighted in red.

More concretely, when a leader receives a command x
from a client, it assigns the command x a log entry i and then
forms a Phase 2a message that includes x and i . The leader
does not send the Phase 2a message to the acceptors. Instead,

it sends the Phase 2a message to a randomly selected proxy

leader. Note that every command can be sent to a different

proxy leader. The leader balances load evenly across all of

the proxy leaders.

Upon receiving a Phase 2a message, a proxy leader broad-

casts it to the acceptors, gathers a quorum of f + 1 Phase 2b
responses, and notifies the replicas of the chosen value. All

other aspects of the protocol remain unchanged.

Without proxy leaders, the leader processes 3f + 4 mes-

sages per command. With proxy leaders, the leader only

processes 2. This makes the leader significantly less of a

throughput bottleneck, or potentially eliminates it as the

bottleneck entirely.

The leader now processes fewer messages per command,

but every proxy leader has to process 3f + 4 messages. Have

we really eliminated the leader as a bottleneck, or have we

just moved the bottleneck into the proxy leaders? To answer

this question, we scale.
Note that the proxy leaders are embarrassingly parallel.

They operate independently from one another. Moreover,

because the leader distributes load among the proxy leaders

equally, the load on any single proxy leader decreases as we

increase the number of proxy leaders. Thus, we can trivially

increase the number of proxy leaders until they are no longer

a throughput bottleneck.
1

1
Note that increasing the number of machines does not affect fault tolerance,

but it does decrease the expected time to f failures.
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Decoupling the leader into separate proxy leaders abides

by the following two heuristics.

Heuristic 1. Decouple control flow from data flow.

Heuristic 2. Decouple unscalable nodes from scalable ones.

First, every state machine replication protocol involves

control flow (e.g., sequencing commands) and data flow

(e.g., broadcasting messages, collecting responses). Decou-

pling control flow from data flow is a well established tech-

nique [17], but it is not often applied to state machine repli-

cation protocols.

Second, state machine replication protocols often involve

fundamentally unscalable components. For example, the

MultiPaxos leader assigns contiguous increasing ids to com-

mands, something that has been proven to be fundamentally

difficult to distribute [7, 18]. If we co-locate a scalable com-

ponent (e.g., proxy leaders) with a centralized component

(e.g., a leader), we prevent ourselves from scaling up the

components that can benefit from scaling.

3.2 Step 2: Multiple Acceptor Groups
After decoupling and scaling the leader, it is possible that the

acceptors are the bottleneck. Surprisingly, we can eliminate

the acceptors as a bottleneck by scaling. It is very widely

believed that acceptors do not scale: “using more than 2f + 1
[acceptors] for f failures is possible but illogical because it

requires a larger quorum size with no additional benefit” [41].

The argument is that adding more acceptors increases the

number of messages that have to be sent and received and

that this hurts throughput instead of helping it.

While it is true that naively adding more acceptors de-

creases throughput, we can scale the number of acceptors

in a meaningful way by taking advantage of the following

insight. A single log entry requires a fixed set of acceptors,

but different log entries are free to have different sets of

acceptors. After two commands have been sequenced by the

leader and assigned different log entries, they can be chosen

completely independently from one another. The acceptors

used to choose the first command can be disjoint from the

acceptors used to chose the second. In other words, acceptors

cannot be implemented with intra-command parallelism but

can be implemented with inter-command parallelism.

We take advantage of this intuition by introducing mul-

tiple acceptor groups, with each acceptor group having

2f + 1 acceptors. This is illustrated in Figure 5.

Log entries are round-robin partitioned among the accep-

tor groups. Given n acceptor groups, when a proxy leader

receives a Phase 2a message for slot s , it contacts acceptor
group i where i mod n ≡ s . Moreover, if the leader fails and

a new leader is elected, the new leader runs Phase 1 by con-

tacting all the acceptor groups. Besides this, the protocol

remains unchanged.

As with the proxy leaders, acceptor groups are embar-

rassingly parallel. We can trivially increase the number of
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Figure 5.AMultiPaxos execution with two acceptor groups.

acceptor groups until they are no longer the throughput

bottleneck.

Acceptor groups introduce another heuristic.

Heuristic 3. Process independent commands independently.

Recognizing that independent commands can be processed

by independent acceptor groups allows us to scale up some-

thing that was previously thought to be unscalable. This

idea has been applied to replication protocols before (e.g.,

generalization [23, 38]) but often not to its fullest extent.

3.3 Step 3: Scaling Replicas
After decoupling and scaling the leader and the acceptors,

it is possible that the replicas are the bottleneck. Certain as-

pects of the replicas do not scale. For example, every replica

must receive and execute every state machine command.

This is unavoidable, and adding more replicas does not re-

duce this overhead.

However, recall that for every state machine command,

only one of the replicas has to send the result of executing

the command back to the client. Thus, with n replicas, every

replica only has to send back results for
1

n of the commands.

If we increase the number of replicas, we reduce the number

of messages that each replica has to send. This reduces the

load on the replicas and helps prevent them from becoming

a throughput bottleneck. This is illustrated in Figure 6.
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Figure 6. An execution of MultiPaxos with three replicas as

opposed to the minimum required two (for f = 1).
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We call this version of MultiPaxos—with proxy leaders,

multiple acceptor groups, and an increased number replicas—

CompartmentalizedMultiPaxos. CompartmentalizedMul-

tiPaxos can process 200,000 commands per second, 8× more

than MultiPaxos without compartmentalization. Moreover,

note that unlike other protocol optimizations (e.g., multi-

leader execution, generalization, speculative execution), com-

partmentalization does not add much complexity to the pro-

tocol. The core of the protocol remains unchanged.

3.4 Step 4: Batching
All statemachine replication protocols, includingMultiPaxos,

can take advantage of batching to increase throughput, as

illustrated in Figure 7. As is standard [35, 37], the leader

collects state machine commands from clients and places

them in batches. The rest of the protocol remains relatively

unchanged, with batches of commands replacing commands

wherever needed. The one notable difference is that replicas

now execute one batch of commands at a time, rather than

one command at a time. After executing a single command,

a replica has to send back a single result to a client, but after

executing a batch of commands, a replica has to send a result

to every client with a command in the batch.

c1

c2

c3

p1

p2

l1

l2

l3

a0
1

a0
2

a0
3

a1
1

a1
2

a1
3

r1

r2

r3

Clients

f + 1
Proposers

≥ f + 1
Proxy Leaders

≥ 1 group of

2f + 1 Acceptors
≥ f + 1
Replicas

1

1

1

2

3

3

4

4 5

5

5

6

6

6

Figure 7. An example execution of MultiPaxos with batch-

ing. Messages that contain a batch of commands, rather than

a single command, are drawn thicker. Note how replica r2
has to send multiple messages after executing a batch of

commands.

3.5 Step 5: Batchers
Batching increases throughput by amortizing the commu-

nication and computation cost of processing a command.

Take the proxy leaders for example. Without batching, a

proxy leader has to process a total of at least 3f +4 messages

per command. With batching, however, a proxy leader has

to process 3f + 4 messages per batch. The communication

overhead is linear in the number of batches, rather than the

number of commands. With batches of size 100, for example,

the number of messages processed per command decreases

by a factor of 100.

Ensuring that communication and computation costs in-

crease linearly with the number of batches rather than the

number of commands is essential to maximize the through-

put gains that batching affords. However, refer again to Fig-

ure 7 and note that the leader does not quite achieve this.

To process a single batch of n commands, the leader has to

receive n messages and send one message. Its communica-

tion cost is linear in the number of commands rather than

the number of batches. Ideally, it would only have to receive

one message and send one message. This makes the leader a

potential throughput bottleneck.

To remove the bottleneck, we applyHeuristic 1 andHeuris-

tic 2 and decouple the leader. The leader has two responsi-

bilities: forming batches and sequencing batches. We decou-

ple the two responsibilities by introducing a set of at least

f + 1 batchers, as illustrated in Figure 8. The batchers are

responsible for receiving commands from clients and form-

ing batches, while the leader is responsible for sequencing

batches.
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Figure 8. An execution of MultiPaxos with batchers.

More concretely, when a client wants to propose a state

machine command, it sends the command to a randomly se-

lected batcher. After receiving sufficiently many commands

from the clients (or after a timeout expires), a batcher places

the commands in a batch and forwards it to the leader. When

the leader receives a batch of commands, it assigns it a log

entry, forms a Phase 2a message, and sends the Phase 2a

message to a proxy leader. The rest of the protocol remains

unchanged.

Without batchers, the leader has to receive n messages

per batch of n commands. With batchers, the leader only

has to receive one. This either reduces the load on the bot-

tleneck leader or eliminates it as a bottleneck completely.

Moreover, as with proxy leaders and acceptor groups, we can

scale the number of batchers until they are not a throughput

bottleneck.

3.6 Step 6: Unbatchers
After executing a batch of n commands, a replica has to send

n messages back to the n clients. Thus, the replicas (like the

leader without batchers) suffer communication overheads

linear in the number of commands rather than the number

of batches.
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To solve this, we again apply our heuristics and decouple
the replicas. We introduce a set of at least f + 1 unbatchers,
as illustrated in Figure 9. The replicas are responsible for

executing commands, while the unbatchers are responsible

for sending the results of executing the commands back to

the clients. Concretely, after executing a batch of commands,

a replica forms a batch of results and sends the batch to a

randomly selected unbatcher. Upon receiving a result batch,

an unbatcher sends the results back to the clients. Also note

that we can again scale the unbatchers until they are not a

throughput bottleneck.
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Figure 9. An execution of MultiPaxos with proxy replicas.

Note that batchers and unbatchers are duals. Batchers

collect state machine commands into batches and send them

into the protocol. Unbatchers receive result batches from the

protocol and split them up into individual results. Together,

they ensure the protocol can take full advantage of batching.

With batching, batchers, and unbatchers, Compartmen-

talized MultiPaxos is able to process 900,000 commands per

second.

4 Mencius
In this section, we show how to compartmentalize a more

complex protocol, Mencius [29].

4.1 Background
As discussed previously, the MultiPaxos leader (without de-

coupling and scaling) is a throughput bottleneck because

all commands go through the leader and because the leader

performs disproportionately more work per command than

the acceptors or replicas. Mencius is a MultiPaxos variant

that attempts to eliminate this bottleneck by using more than

one leader.

Rather than having a single leader sequence all commands

in the log, Mencius round-robin partitions the log among

multiple leaders. For example, consider the scenario with

three leaders l1, l2, and l3 illustrated in Figure 10. Leader l1
gets commands chosen in slots 0, 3, 6, etc.; leader l2 gets
commands chosen in slots 1, 4, 7, etc.; and leader l3 gets

commands chosen in slots 2, 5, 8, etc.
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Figure 10. A Mencius log round robin partitioned among

three leaders.
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Figure 11. An example of using noops to deal with a slow

leader. Leader l3 is slower than leaders l1 and l2, so the log

has holes in l3’s slots. l3 fills its holes with noops to allow

commands in the log to be executed.

Having multiple leaders works well when all the leaders

process commands at the exact same rate. However, if one

of the leaders is slower than the others, then holes start

appearing in the log entries owned by the slow leader. This

is illustrated in Figure 11a. Figure 11a depicts a Mencius log

partitioned across three leaders. Leaders l1 and l2 have both
gotten a few commands chosen (e.g., a in slot 0, b in slot

1, etc.), but leader l3 is lagging behind and has not gotten

any commands chosen yet. Replicas execute commands in

log order, so they are unable to execute all of the chosen

commands until l3 gets commands chosen in its vacant log

entries.

If a leader detects that it is lagging behind, then it fills its

vacant log entries with a sequence of noops. A noop is a

distinguished command that does not affect the state of the

replicated state machine. In Figure 11b, we see that l3 fills
its vacant log entries with noops. This allows the replicas to

execute all of the chosen commands.

More concretely, a Mencius deployment that tolerates f
faults is implemented with 2f + 1 servers, as illustrated in

Figure 12. Roughly speaking, every Mencius server plays the

role of a MultiPaxos leader, acceptor, and replica.

When a client wants to propose a state machine command

x , it sends x to any of the servers. Upon receiving command

x , a server sl plays the role of a leader. It assigns the command

x a slot i and sends a Phase 2a message to the other servers

6
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Figure 12. An example execution of Mencius.

that includes x and i . Upon receiving a Phase 2a message,

a server sa plays the role of an acceptor and replies with a

Phase 2b message.

In addition, sa uses i to determine if it is lagging behind

sl . If it is, then it sends a skip message along with the Phase

2b message. The skip message informs the other servers to

choose a noop in every slot owned by sa up to slot i . For
example, if a server sa ’s next available slot is slot 10 and it

receives a Phase 2a message for slot 100, then it broadcasts a

skip message informing the other servers to place noops in

all of the slots between slots 10 and 100 that are owned by

server sa . Mencius leverages a protocol called Coordinated

Paxos to ensure noops are chosen correctly. We refer to the

reader to [29] for details.

Upon receiving Phase 2b messages for command x from

a majority of the servers, server sl deems the command x
chosen. It informs the other servers that the command has

been chosen and also sends the result of executing x back to

the client.

4.2 Compartmentalization
Mencius uses multiple leaders to avoid being bottlenecked by

a single leader. However, despite this, Mencius still does not

achieve optimal throughput. Part of the problem is that every

Mencius server plays three roles, that of a leader, an acceptor,

and a replica. Because of this, a server has to send and receive

a total of roughly 3f + 5 messages for every command that

it leads and also has to send and receive messages acking

other servers as they simultaneously choose commands.

We can solve this problem by decoupling the servers. In-

stead of deploying a set of heavily loaded servers, we instead

view Mencius as a MultiPaxos variant and deploy it as a set

of proposers, a set of acceptors, and set of replicas. This is

illustrated in Figure 13.

Now, Mencius is equivalent to MultiPaxos with the fol-

lowing key differences. First, every proposer is a leader, with

the log round-robin partitioned among all the proposers. If a

client wants to propose a command, it can send it to any of

the proposers. Second, the proposers periodically broadcast

their next available slots to one another. Every server uses

this information to gauge whether it is lagging behind. If it

is, it chooses noops in its vacant slots, as described above.
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Figure 13. An example execution of decoupled Mencius.

Note that every proposer is a leader.

This decoupled Mencius is a step in the right direction, but

it shares many of the problems that MultiPaxos faced. The

proposers are responsible for both sequencing commands

and for coordinating with acceptors; we have a single un-

scalable group of acceptors; and we are deploying too few

replicas. Thankfully, we can apply our heuristics and com-

partmentalize Mencius in exactly the same way as Multi-

Paxos by leveraging proxy leaders, multiple acceptor groups,

and more replicas. This is illustrated in Figure 14.
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Figure 14.An execution of Mencius with proxy leaders, mul-

tiple acceptor groups, and an increased number of replicas.

This protocol, called Compartmentalized Mencius, shares

all of the advantages of Compartmentalized MultiPaxos.

Proxy leaders and acceptors both trivially scale so are not bot-

tlenecks, while leaders and replicas have been pared down to

their essential responsibilities of sequencing and executing

commands respectively. Moreover, because Mencius allows

us to deploy multiple leaders, we can also increase the num-

ber of leaders until they are no longer a bottleneck. To sup-

port batching, we can also introduce batchers and unbatchers

like we did with MultiPaxos.

Without compartmentalization,Mencius can process 30,000

commands per second without batching and 200,000 with

batching. Compartmentalized Mencius can process 250,000

commands per second without batching and 850,000 com-

mands per second with batching.
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5 S-Paxos
In this section, we showhow to compartmentalize S-Paxos [13],

a MultiPaxos variant that decouples command dissemination

from command ordering.

5.1 Background
S-Paxos is a MultiPaxos variant that, like Mencius, aims

to avoid being bottlenecked by a single leader. Recall that

when a MultiPaxos leader receives a state machine command

x from a client, it broadcasts a Phase 2a message to the

acceptors that includes the command x . If the leader receives
a state machine command that is large (in terms of bytes)

or receives a large batch of modestly sized commands, the

overheads of disseminating the commands begin to dominate

the cost of the protocol, exacerbating the fact that command

disseminating is performed solely by the leader.

S-Paxos avoids this by applying Heuristic 1. It decou-

ples command dissemination from command sequencing—

separating control from from data flow—and distributes com-

mand dissemination across all nodes. More concretely, an

S-Paxos deployment that tolerates f faults consists of 2f + 1
servers, as illustrated in Figure 15. Every server plays the

role of a MultiPaxos proposer, acceptor, and replica. It also

plays the role of a disseminator and stabilizer, two roles
that will become clear momentarily.
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(b) Ordering

Figure 15. An example execution of S-Paxos. Messages that

include client commands (as opposed to ids) are bolded.

When a client wants to propose a state machine com-

mand x , it sends x to any of the servers. Upon receiving a

command from a client, a server plays the part of a dissemi-

nator. It assigns the command a globally unique id idx and

begins a dissemination phase with the goal of persisting

the command and its id on at least a majority of the servers.

This is shown in Figure 15a. The server broadcasts x and

idx to the other servers. Upon receiving x and idx , a server

plays the role of a stabilizer and stores the pair in memory.

It then broadcasts an acknowledgement to all servers. The

acknowledgement contains idx but not x .
One of the servers is theMultiPaxos leader. Upon receiving

acknowledgements for idx from a majority of the servers,

the leader knows the command is stable. It then uses the id

idx as a proxy for the corresponding command x and runs

the MultiPaxos protocol as usual (i.e. broadcasting Phase

2a messages, receiving Phase 2b messages, and notifying

the other servers when a command id has been chosen) as

shown in Figure 15b. Thus, while MultiPaxos agrees on a log

of commands, S-Paxos agrees on a log of command ids.
The S-Paxos leader, like the MultiPaxos leader, is responsi-

ble for ordering command ids and getting them chosen. But,

the responsibility of disseminating commands is shared by

all the servers.

5.2 Compartmentalization
We compartmentalize S-Paxos similar to how we compart-

mentalizeMultiPaxos andMencius. First, wedecouple servers
into a set of at least f +1 disseminators, a set of 2f +1 stabiliz-
ers, a set of proposers, a set of acceptors, and a set of replicas.

This is illustrated in Figure 16. To propose a command x , a
client sends it to any of the disseminators. Upon receiving

x , a disseminator persists the command and its id idx on at

least a majority of (and typically all of) the stabilizers. It then

forwards the id to the leader. The leader gets the id chosen

in a particular log entry and informs one of the stabilizers.

Upon receiving idx from the leader, the stabilizer fetches x
from the other stabilizers if it has not previously received

it. The stabilizer then informs the replicas that x has been

chosen. Replicas execute commands in prefix order and reply

to clients as usual.
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Figure 16.An example execution of decoupled S-Paxos. Mes-

sages that include client commands (as opposed to ids) are

bolded. Note that the MultiPaxos leader does not send or re-

ceive any messages that include a command, only messages

that include command ids.

Though S-Paxos relieves the MultiPaxos leader of its duty

to broadcast commands, the leader still has to broadcast com-

mand ids. In other words, the leader is no longer a bottleneck

on the data path but is still a bottleneck on the control path.

Moreover, disseminators and stabilizers are potential bottle-

necks. We can resolve these issues by compartmentalizing

S-Paxos similar to how we compartmentalized MultiPaxos.

We introduce proxy leaders, multiple acceptor groups, and

8
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more replicas. Moreover, we can trivially scale up the num-

ber of disseminators and can deploy multiple disseminator

groups similar to how we deploy multiple acceptor groups.

This is illustrated in Figure 17. To support batching, we can

again introduce batchers and unbatchers.
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Figure 17. An example execution of S-Paxos with multiple

stabilizer groups, proxy leaders, multiple acceptor groups,

and an increased number of replicas. Messages that include

client commands (as opposed to ids) are bolded.

6 Discussion
In this section, we clarify the novelty of the paper and share

some insights on protocol complexity.

6.1 Novelty
Decoupling and scaling are classic systems techniques, and

the heuristics described in this paper are already well known.

We do not claim to have invented these. We are not even

the first to apply these techniques or heuristics to state ma-

chine replication protocols. Both Mencius and S-Paxos, for

example, use decoupling to try and prevent the leader from

becoming a throughput bottleneck.

The novelty of this paper is the depth and breadth with

which we investigate compartmentalizing state machine

replication protocols. In terms of depth, we propose novel
ways to decouple and scale replication protocols. We intro-

duce proxy leaders to pare down the leader. We use multiple

acceptor groups to debunk the myth that acceptors do not

scale. We show how to take full advantage of batching by

using batchers and unbatchers. While existing protocols, like

Mencius and S-Paxos, perform some forms of decoupling

and scaling, by applying our techniques, we increase their

throughput by as much as 8×.

In terms of breadth, we demonstrate how widely appli-

cable decoupling and scaling are. In this paper, we focus on

three state machine replication protocols—MultiPaxos, Men-

cius, and S-Paxos—but many other state machine replication

protocols can be compartmentalized as well. Protocols like

Viewstamped Replication [27], Raft [32], Flexible Paxos [19],

and DPaxos [31] that are very similar to MultiPaxos, for ex-

ample, can leverage the techniques described in this paper

withoutmuchmodification.We can also apply the techniques

to more sophisticated protocols like Generalized Paxos [23],

EPaxos [30], and Caesar [9]. Bipartisan Paxos [8], for exam-

ple, is a partially compartmentalized version of EPaxos.

6.2 The Curse of Complexity
The depth and breadth of our investigation also debunks

the commonly held belief that simple state machine replica-

tion protocols like MultiPaxos cannot achieve high through-

put. Our implementation of Compartmentalized MultiPaxos

achieves a throughput of 200,000 commands per second with-

out batching. This is roughly 4× higher than the reported

throughput of EPaxos and Caesar, two protocols that aim

to increase the throughput of MultiPaxos by using multiple

leaders, fast paths, and generalized execution [9, 30].

Ironically, these sophisticated techniques that aim to elimi-

nate throughput bottlenecks can actually become the through-
put bottleneck! Take EPaxos as an example. EPaxos can be

partially compartmentalized to increase its throughput. This

was done in [8], where BPaxos, a compartmentalized vari-

ant of EPaxos, achieves a throughput twice that of EPaxos.

However, EPaxos cannot easily achieve higher throughput

because the techniques it uses become CPU bottlenecks.

For example, an EPaxos replica executes a directed graph

of commands in reverse topological order, one strongly con-

nected component at a time. This requires replicas to execute

a computationally expensive graph algorithm (e.g. Tarjan’s

algorithm). Contrast this with a MultiPaxos replica which

instead executes commands by scanning over a log (read

array) of commands. Empirically, this graph execution was

the throughput bottleneck for the BPaxos implementation

presented in [8]. Moreover, while it is not impossible to scale
this graph traversal using some sort of distributed graph

algorithm, it is hard to imagine that it could be optimized

enough to outperform the simple scan of a contiguous array

that MultiPaxos replicas perform.

7 Evaluation
7.1 MultiPaxos Latency-Throughput
ExperimentDescription We implementedMultiPaxos, Com-

partmentalized MultiPaxos, and an unreplicated state ma-

chine in Scala using the Netty networking library. Multi-

Paxos employs 2f + 1 machines with each machine playing

the role of a MultiPaxos proposer, acceptor, and replica. Com-

partmentalized MultiPaxos is the fully compartmentalized

protocol described in Section 3.

The unreplicated state machine is implemented on a single

process on a single server. Clients send commands directly

to the state machine. Upon receiving a command, the state

machine executes it immediately and sends back the result.

Note that unlike MultiPaxos and Compartmentalized Multi-

Paxos, the unreplicated state machine is not fault tolerant. If
the single server fails, all state is lost and no commands can

9
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Protocol Batched Number of clients

1 10 100

▲ Multi. . . no 0.27 0.78 4.58

• Comp. . . no 0.38 0.38 1.13

■ Unrepl. . . no 0.07 0.11 0.34

▲ Multi. . . yes 0.29 0.39 1.03

• Comp. . . yes 0.47 0.44 0.62

■ Unrepl. . . yes 0.16 0.21 0.32

(c)Median latency (ms) from (a) and (b)

Figure 18. The latency and throughput of MultiPaxos, Compartmentalized MultiPaxos, and an unreplicated state machine

with and without batching for 1, 10, 50, 100, 300, 600, 1000, 2000, and 4000 clients.

be executed. Thus, the unreplicated state machine should

not be viewed as an apples to apples comparison with the

other two protocols. Instead, the unreplicated state machine

sets an upper bound on attainable performance.

We measure the throughput and median latency of the

three protocols under workloads with 1, 10, 50, 100, 300, 600,

1000, 2000, and 4000 clients. Each client issues state machine

commands in a closed loop. It waits to receive the result

of executing its most recently proposed command before it

issues another. Note that multiple clients are run within a

single process, so the number of physical client processes

can be significantly less than the number of logical clients.

We note the following details about our experiment.

• We deploy the protocols with and without batching. For a

given number of clients, the batch size is set empirically

to optimize throughput.

• To fairly compare the unreplicated state machine with

Compartmentalized MultiPaxos, we deploy the unrepli-

cated state machine with a set of batchers and unbatchers

(when batching is enabled).

• We deploy all protocols with f = 1. We deploy Compart-

mentalized MultiPaxos with two proposers, three acceptor

groups, and five replicas. Without batching, Compartmen-

talized MultiPaxos uses 30 proxy leaders. With batching, it

uses between 2 and 8 batchers, 23 proxy leaders and 10 un-

batchers. We deploy the unreplicated state machine with

10 batchers and 10 unbatchers. Note that Compartmen-

talized MultiPaxos uses more machines than MultiPaxos

because it has been scaled up.

• All three protocols use a “noop” state machine. State ma-

chine commands are zero bytes, executing a command is a

noop, and the result of executing a command is also zero

bytes. This allows us to study the effects of compartmental-

ization in isolation. As command execution time increases,

the effects of compartmentalization (and any other pro-

tocol optimization) become less and less pronounced. In

the limit, if an application is bottlenecked by command

execution, then protocol optimizations are moot.

• We deploy the three protocols on AWS using a set of

m5.2xlarge machines within a single availability zone.

• All numbers presented are the average of three executions

of the benchmark.

• As is standard, we implement MultiPaxos and Compart-

mentalized MultiPaxos with thriftiness enabled [30].

Results The results of the experiment are shown in Fig-

ure 18. In Figure 18a, we see the median latency and through-

put of the three protocols without batching. MultiPaxos

is able to process at most 25,000 commands per second.

Compartmentalized MultiPaxos is able to process roughly

200,000 commands per second, an 8× throughput improve-

ment. Moreover, at peak throughput, MultiPaxos’ median

latency is three times that of Compartmentalized MultiPaxos.

The unreplicated state machine outperforms both pro-

tocols. It achieves a peak throughput of roughly 300,000

commands per second with latencies similar to Compart-

mentalized MultiPaxos. Compartmentalized MultiPaxos un-

derperforms the unreplicated state machine because—despite

decoupling the leader as much as possible—the single leader

remains a throughput bottleneck.

The median latency and throughput of the three proto-

cols with batching is shown in Figure 18b. With 4,000 clients,

MultiPaxos, CompartmentalizedMultiPaxos, and the unrepli-

cated state machine achieve 200,000, 900,000, and 1,100,000

commands per second respectively. With batching, Com-

partmentalized MultiPaxos comes closer to matching the

throughput of the unreplicated state machine since batching

amortizes the overheads of the leader.

Figure 18c shows the median latency of the three protocols

when subjected to load generated by 1, 10, and 100 clients.

We refer to the number of network delays that a client must

wait between proposing a command x and receiving the

result of executing x as the commit delay. Referring to

Figure 6, we see that Compartmentalized MultiPaxos has a

commit delay of six, while MultiPaxos has a commit delay

of only four. With only one client, this smaller commit delay

translates directly to lower latency. MultiPaxos achieves a
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median latency of 0.27 milliseconds compared to Compart-

mentalized MultiPaxos’ 0.38 milliseconds. However, with

fast networks and moderate to heavy loads, queueing times

(rather than network traversals) become the determining

factor of commit latency. With as few as 10 or 100 clients,

Compartmentalized MultiPaxos is able to achieve lower la-

tency than MultiPaxos. We note though that this result is

particular to our deployment within a single data center.

For geo-replicated protocols deployed on the WAN, commit

delay is the determining factor of commit latency. Compart-

mentalized protocols are not a good fit for this scenario.

Also note that the primary goal of this experiment is to

measure the relative speedups that compartmentalization

provides. While the absolute performance numbers that we

achieve are important, they are not our primary focus. For

example, this experiment is not meant to demonstrate that

Compartmentalized MultiPaxos is the world’s fastest state

machine replication protocol (though it is fast). Rather, it is

designed to demonstrate that compartmentalization yields

significant speedups.

7.2 Mencius Latency-Throughput
We repeat the experiment above but with Mencius and Com-

partmentalized Mencius. Compartmentalized Mencius uses

the same number of machines as Compartmentalized Multi-

Paxos, except it uses three proposers instead of two.

The results are shown in Figure 19. Without batching,

Mencius can process roughly 30,000 commands per second.

Compartmentalized Mencius can process roughly 250,000

commands per second, an 8.3× improvement. Compartmen-

talizedMencius outperforms CompartmentalizedMultiPaxos

and comes close to matching the performance of the unrepli-

cated state machine by avoiding the single leader bottleneck.

With batching, Mencius and Compartmentalized Mencius

achieve peak throughputs of nearly 200,000 and 850,000 com-

mands per second respectively, a 4.25× improvement. The

latencies reported in Figure 18c confirm that Compartmen-

talized Mencius has higher latency than Mencius under low

load but lower latency under moderate to heavy load.

7.3 S-Paxos Latency-Throughput
We repeat the experiments above with S-Paxos and Compart-

mentalized S-Paxos. Without batching, Compartmentalized

S-Paxos achieves a peak throughput of 180,000 commands

per second compared to S-Paxos’ throughput of 22,000 (an

8.2× improvement). With batching, Compartmentalized S-

Paxos achieves a peak throughput of 750,000 commands per

second compared to S-Paxos’ throughput of 180,000 (a 4.16×
improvement). Note that our implementation of S-Paxos

is not as optimized as our other two implementations, so

its absolute performance is lower. As noted above though,

demonstrating absolute performance is a secondary goal to

demonstrating relative speedups.

7.4 MultiPaxos Ablation Study
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Figure 20.An ablation study. Standard deviations are shown
using error bars.

Experiment Description The previous experiments con-

firm that compartmentalization can increase the throughput

of a state machine protocol by as much as 8.3× without

batching and by as much as 4.5× with batching. We now

perform an ablation study to pinpoint where these through-

put improvements come from. In particular, we begin with

MultiPaxos (both batched and unbatched) and repeatedly

perform the optimizations described in Section 3, reporting

the peak throughput of the protocol after each optimization

when subjected to load generated by 1000 clients (unbatched)

or 4000 clients (batched). All the details of this experiment

are the same as the previous experiments unless otherwise

noted.

Results The unbatched ablation study results are shown

in Figure 20a. MultiPaxos achieves a throughput of roughly

25,000 commands per second. If we decouple the protocol—

separating the proposers, acceptors, and replicas—and in-

troduce proxy leaders, we achieve a throughput of roughly

55,000 commands per second. This decoupled MultiPaxos

uses the bare minimum number of proposers (2), proxy lead-

ers (2), acceptors (3), and replicas (2). As we scale up the
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Protocol Batched Number of clients

1 10 100

▲ Mencius no 0.59 1.69 5.36

• Comp. . . no 0.54 0.52 0.92

■ Unrepl. . . no 0.07 0.11 0.34

▲ Mencius yes 0.59 1.81 2.13

• Comp. . . yes 0.57 0.57 0.75

■ Unrepl. . . yes 0.16 0.21 0.32

(c)Median latency (ms) from (a) and (b)

Figure 19. The latency and throughput of Mencius, Compartmentalized Mencius, and an unreplicated state machine with and

without batching for 1, 10, 50, 100, 300, 600, 1000, 2000, and 4000 clients.

number of proxy leaders from 2 to 8, the throughput of

the protocol increases until it plateaus at roughly 150,000

commands per second. If we then introduce an additional

acceptor group, the throughput jumps to roughly 175,000

commands per second. In this experiment, the two replicas

are not a bottleneck, so increasing the number of replicas

does not increase the throughput. However, if state machine

results were larger in size, the communication overheads of

replying to clients would increase, and the protocol would

benefit from more replicas.

The batched ablation study results are shown in Figure 20a.

Decoupling MultiPaxos and introducing two batchers and

two unbatchers increases the throughput of the protocol

from 200,000 commands per second to 500,000 commands per

second. Increasing the number of unbatchers increases the

throughput again to a plateau of roughly 900,000 commands

per second. For this experiment, two batchers are sufficient to

handle the clients’ load. With more clients and a larger load,

more batchers would be needed to maximize throughput.

8 Related Work
Bipartisan Paxos [8] presents Bipartisan Paxos (BPaxos),

a compartmentalized version of EPaxos with double the

throughput and with a simpler design. [8] also discusses

decoupling and scaling, but it focuses solely on applying the

techniques to EPaxos. This paper demonstrates how to apply

the techniques to a wider range of protocols.

Scalable Agreement In [21], Kapritsos et al. present a pro-

tocol similar to our Compartmentalized Mencius. The proto-

col round-robin partitions log entries among a set of replica

clusters co-located on a fixed set of machines. Every cluster

has 2f + 1 replicas, with every replica playing the role of a

Paxos proposer and acceptor. Compartmentalized Mencius

extends the protocol by decoupling leaders and acceptors,

introducing proxy leaders, introducing the possibility of hav-

ing multiple acceptor groups per cluster, and describing how

to implement batching efficiently.

NoPaxos NoPaxos [26] is a Viewstamped Replication [27]

variant that depends on an ordered unreliable multicast

(OUM) layer. Each client sends commands to a centralized

sequencer that is implemented on a network switch. The

sequencer assigns increasing ids to the commands and broad-

casts them to a set of replicas. The replicas speculatively

execute commands and reply to clients. In this paper, we de-

scribe how to use proxy leaders to avoid having a centralized

leader. NoPaxos’ on-switch sequencer is a hardware based

alternative to avoid the bottleneck.

A Family of Leaderless Generalized Protocols In [28],

Losa et al. propose a template that can be used to implement

state machine replication protocols that are both leaderless

and generalized. The goal of this modularization is to unify

existing protocols like EPaxos [30], and Caesar [9]. However,

the modularity also introduces decoupling which can lead

to performance gains. This is realized by BPaxos [8].

Multithreaded Replication [36] and [11] both propose

multithreaded state machine replication protocols. The pro-

tocol in [36] is implemented using a combination of actors

and the SEDA architecture [40]. [11] argues for a Mencius-

like approach in which each thread has complete functional-

ity (receiving, sequencing, and sending), with slots round-

robin partitioned across threads. Multithreaded protocols

like these are necessarily decoupled and scale within a single

machine. This work is complementary to compartmental-

ization. Compartmentalization works at the protocol level,

while multithreading works on the process level. Both can

be applied to a single protocol.

Sharding In this paper, we have discussed state machine

replication in its most general form. We have not made any

assumptions about the nature of the state machines them-

selves. However, if we are able to divide the state of the state

machine into independent shards, then we can further scale

the protocols. For example, in [12], Bezerra et al. discuss how

state machine replication protocols can take advantage of

sharding.
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